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Significance

Errors in clinical decision-making 
are disturbingly common. Here, 
we show that structured 
information–sharing networks 
among clinicians significantly 
reduce diagnostic errors, and 
improve treatment 
recommendations, as compared 
to groups of individual clinicians 
engaged in independent 
reflection. Our findings show that 
these improvements are not a 
result of simple regression to the 
group mean. Instead, we find 
that within structured 
information–sharing networks, 
the worst clinicians improved 
significantly while the best 
clinicians did not decrease in 
quality. These findings offer 
implications for the use of social 
network technologies to reduce 
diagnostic errors and improve 
treatment recommendations 
among clinicians.
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Errors in clinical decision-making are disturbingly common. Recent studies have found 
that 10 to 15% of all clinical decisions regarding diagnoses and treatment are inaccurate. 
Here, we experimentally study the ability of structured information–sharing networks 
among clinicians to improve clinicians’ diagnostic accuracy and treatment decisions. 
We use a pool of 2,941 practicing clinicians recruited from around the United States 
to conduct 84 independent group-level trials, ranging across seven different clinical 
vignettes for topics known to exhibit high rates of diagnostic or treatment error (e.g., 
acute cardiac events, geriatric care, low back pain, and diabetes-related cardiovascular 
illness prevention). We compare collective performance in structured information–shar-
ing networks to collective performance in independent control groups, and find that 
networks significantly reduce clinical errors, and improve treatment recommendations, 
as compared to control groups of independent clinicians engaged in isolated reflection. 
Our results show that these improvements are not a result of simple regression to the 
group mean. Instead, we find that within structured information–sharing networks, 
the worst clinicians improved significantly while the best clinicians did not decrease in 
quality. These findings offer implications for the use of social network technologies to 
reduce errors among clinicians.

decision-making | collective intelligence | networks | medical errors

Errors in clinicians’ diagnostic assessments are a leading cause of incorrect treatment 
recommendations (1, 2), resulting in both unnecessary testing and delayed treatment (3). 
The rapidly expanding literature on “medical collective intelligence” shows that the col-
lective judgment of a large group of clinicians is consistently more accurate than judgments 
of expert individual clinicians (4, 5). This finding, sometimes referred to as “the wisdom 
of the clinical crowd”, has been demonstrated across numerous medical specialties, includ-
ing dermatology (6), radiology (7), cardiology (8), and intensive care medicine (9). 
Growing interest in these findings among both academic and clinical researchers (10, 11) 
has motivated the development of new medical technologies and clinical protocols to 
harness the wisdom of the crowd for clinical decision-making (12–14).

However, a significant theoretical challenge for the expanding field of medical collective 
intelligence comes from the fact that research on large-scale crowd-based aggregation 
methods does not identify any mechanisms by which the “wisdom of the clinical crowd” 
improves individual clinical decisions. In other words, while aggregation methods can 
successfully demonstrate that a collective ‘group choice’ typically outperforms the indi-
vidual members of the group, the group members themselves do not improve. This is 
partially a consequence of the fact that the vast majority of these studies are conducted 
post hoc (i.e., examining pools of data on clinicians’ past decisions); thus calculations of 
crowd wisdom are disconnected from the question of how crowd wisdom influences the 
quality of care offered by individual clinicians. This disconnect represents a significant 
problem for the field of medical collective intelligence. Without an approach for leveraging 
the increased medical intelligence at the ‘crowd level’ and a demonstration of the mech-
anisms through which it can advance the quality of individual clinical decisions, crowd 
research will have limited impact on real-time clinical reasoning.

We followed prior research in nonclinical settings by adopting a network-theoretic 
approach to studying how the aggregation dynamics of collective intelligence within large 
groups of clinicians may directly improve the quality of individual clinical judgements. 
Previous nonclinical studies have shown that structured information exchange networks 
with uniform—i.e., egalitarian (15)—connectivity can effectively translate group-level 
collective intelligence into real-time improvements in the quality of individual group 
members’ judgments (15–18). We explored whether this approach to leveraging the net-
work aggregation dynamics of collective intelligence would directly improve the quality 
of individual clinical judgements. Historically, a significant limitation to testing this 
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network-theoretic approach to medical collective intelligence was 
the impossibility of enrolling large groups of clinicians to partic-
ipate in the evaluation of clinical cases simultaneously, while 
embedded in large information-sharing networks. However, recent 
advances in experimental network science have provided a method 
for connecting large numbers of doctors into information-sharing 
networks. This method was recently applied to the problem of 
reducing race and gender bias in clinical reasoning (19). The find-
ings showed that networks produced significant reductions in 
medical bias as a result of clinicians’ interactions within egalitarian 
peer-to-peer information-sharing networks. Here, we use this net-
work method across a range of clinical specialties to identify a 
general mechanism through which the network dynamics of med-
ical collective intelligence can improve real-time medical judge-
ments among large numbers of individual clinicians.

We recruited 2,941 practicing clinicians to participate in an 
online vignette–based experiment administered through a propri-
etary mobile networking app for clinicians (hereafter “App”; see 
SI Appendix, Materials and Methods). To evaluate the robustness 
of our experimental findings, we tested our network hypothesis 
across 7 different clinical cases, conducting a total of 84 replicated 
experimental trials (SI Appendix, Materials and Methods).

Experimental Design

For each of the seven clinical case vignettes, we conducted a total 
of 12 trials—eight network trials and four control trials (SI Appendix, 
Materials and Methods). Each trial contained 40 clinicians. Each 
clinical vignette was reviewed by board-certified clinicians from 
three specialties: internal medicine, emergency medicine, and car-
diology. Case vignettes were designed using clinical decision-making 
scenarios which were known to elicit errors despite having an 
accepted, evidence-based risk estimate and treatment recommen-
dation. In six out of seven vignettes, the correct estimate and treat-
ment recommendation were identified by existing society guidelines 
for evidence-based care. In the case that no society guidelines existed 
(i.e., vignette three), the correct responses were identified by avail-
able evidence-based research (see SI Appendix, Clinical Vignettes for 
details). The clinical case scenarios used in this study included: acute 
cardiac events, geriatric care and decline in activities of daily living, 
lower back pain, and diabetes-related cardiovascular illness preven-
tion (SI Appendix, Materials and Methods).

Our experimental approach to studying collective intelligence 
in real-time medical decision-making is based on past work that 
identifies an essential connection between risk estimation pro-
cesses and correct treatment decisions in clinical reasoning (20). 
This work shows that a clinician’s categorical treatment decision, 
for instance to either admit a patient to the observation unit for 
further testing, or to send them home with a 1-wk follow-up, 
relies upon an (often unconscious) estimate of a patient’s likeli-
hood of suffering an adverse health event within a clinically rel-
evant time window (20). This model of medical reasoning 
indicates that although a clinician must ultimately make a cate-
gorical choice by selecting a single treatment plan, the underlying 
rationale for their decision is typically based upon a risk estimate 
for the patient. An important implication of this model is that 
the quality of clinicians’ treatment decisions may be directly 
improved by increasing the accuracy of their clinical estimates 
about a patient’s risk level (19, 20). We use this insight in the 
development of our experimental networking protocol for clini-
cians by requiring participating clinicians to provide, for each 
patient: i) an estimate of the patient’s risk level (i.e., a diagnostic 
assessment of a patient’s likelihood of having an adverse health 
event within a stipulated time period, from 0 to 100), and ii) a 
categorical treatment decision (i.e., a recommendation for a treat-
ment plan for the patient). This experimental design enables us 
to identify the process through which medical collective intelli-
gence may produce direct changes in individual clinicians’ medical 
judgments both in terms of the accuracy of their estimates regard-
ing patients’ risk levels, and the quality of their ultimate treatment 
recommendations.

Participating clinicians in the study viewed the case vignettes 
using the study App, and were instructed to respond to two sep-
arate questions: one pertaining to diagnostic risk estimate and one 
pertaining to treatment recommendation. For instance, for a clin-
ical case concerning cardiac illness, the diagnostic question asks, 
“What is the estimated 6-wk risk of this patient having a major 
adverse cardiac event?” The treatment decision question then asks, 
“What is your recommended next step: A) discharge, B) admit 
for evaluation or C) admit for observation unit.”

In each trial, participants were digitally randomized to either 
the network condition or the independent control condition in a 
2:1 ratio (Fig. 1). In the network condition, participants were 
randomly assigned to a single location in a large, anonymous 

Fig. 1. Participant flow through the study.D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
07

.1
33

.2
07

.1
08

 o
n 

Ju
ly

 2
4,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
10

7.
13

3.
20

7.
10

8.

http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials


PNAS  2023  Vol. 120  No. 31  e2108290120� https://doi.org/10.1073/pnas.2108290120   3 of 8

egalitarian online peer-to-peer network (N = 40 clinicians per 
network), in which every participant had an equal number of 
connections (z = 4 connections per clinician), which ensured that 
no single participant had greater power over the communication 
dynamics within the network (18) (SI Appendix, Materials and 
Methods). Participants in the network condition were told that 
they would see clinical estimates from anonymous peers. Following 
previous studies of network learning dynamics (16, 18, 19), we 
did not provide participants with information about the size of 
their immediate network neighborhood, nor the overall size of the 
network in which they were embedded. Within each trial, partic-
ipant networks were fixed; connections did not change during the 
course of a trial. In the control condition, clinicians (N = 40 per 
trial) viewed the same vignette and answered the same questions 
as in the network condition, but they acted independently, and 
were not embedded in social networks.

In both the network and control conditions, participants were 
given three rounds to provide their risk assessments and treatment 
recommendations for the presented clinical case. In the initial round, 
all participants independently viewed the case vignette, and were 
given 2 min to provide their risk assessment and treatment recom-
mendation. In the network condition, in round two clinicians were 
again shown the case vignette, as well as being shown the average 
risk estimate given by their network contacts. They were then asked 
to provide a revised risk estimate and clinical recommendation. 
Notably, participants were only provided with information about 
their peers’ risk assessments, and were not given information about 
their peers’ treatment recommendations. Per earlier research on 
medical decision-making (20), this experimental design enabled us 
to evaluate whether information-sharing networks in which clini-
cians share only their risk estimates can yield direct improvements 
in the quality of their treatment recommendations. In the second 
round, participants could either provide the same responses they 
gave in the initial round or modify their responses. In the final 
round, this procedure was repeated again. Participants were shown 
the average risk estimate given by their network contacts in the 
second round, and were then asked to provide their final risk esti-
mates and treatment recommendations.

The control condition was identical to the network condition, 
except that clinicians were not embedded in peer networks, and 
were not given any information about other participants’ responses. 
Thus, in the control condition, in all three rounds participants 
remained isolated while they viewed the clinical vignette, and 
provided their risk estimate and treatment recommendation. In 
all three rounds, participants were given 2 min to respond.

Each trial lasted approximately 8 min. All participants were 
eligible to participate in up to seven trials (one trial for each of 
the seven clinical cases). The vast majority of subjects (70%) 
participated in only one trial (i.e., one clinical case). A minority 
of subjects (30%) participated in two independent trials. These 
subjects were independently randomized to condition in each 
trial. No subjects participated in more than two trials. Upon 
completing a trial, participants were shown a final payment page 
that displayed: 1) the amount of compensation, ranging from 
$0 to $40, based on the accuracy of their response in the final 
round; 2) the correct treatment recommendation for the patient; 
and 3) resources for learning more about the case examined in 
the clinical vignette (SI Appendix, Materials and Methods). All 
participants, regardless of experimental condition and compen-
sation, were provided with the same final information and 
resources concerning the correct answers and SI Appendix, 
Materials and Methods for each vignette (SI Appendix, Materials 
and Methods).

Analysis Approach

Our primary outcomes of interest are changes in the accuracy of 
clinicians’ risk estimates, and changes in the overall frequency of 
clinicians making the correct treatment recommendations. First, 
we determined the error of each clinician’s estimate at each round 
by calculating the absolute distance (in percentage points) between 
their provided estimate and the correct estimate for the patient 
vignette. We converted this measure of diagnostic error into a 
measure of diagnostic accuracy by i) taking the negative of each 
clinician’s diagnostic error (εi × −1 for all clinicians i, …, n), so 
that clinicians with the highest error (i.e., the greatest absolute 
distance between their estimate and the truth) are considered to 
have the lowest accuracy, and then ii) arranging these negative 
error values along a 0 to 1 scale using min–max normalization [x 
– min(x)/max(x) – min(x)]. Finally, we adopted the conservative 
strategy of calculating diagnostic accuracy at the trial level. This 
conservative analytic approach reduces our sample size, and thus 
reduces our power to detect the effects of our network intervention 
on clinician performance; however, it is the most rigorous way to 
account for the nonindependence among clinicians within the 
network condition (SI Appendix, Materials and Methods), and 
therefore enables us to preserve causal identification of the direct 
effects of egalitarian peer networks on changes in clinician perfor-
mance (15, 16, 18, 19). Second, we report the fraction of clinicians 
in each trial providing the correct clinical recommendation. As 
above, to preserve causal identification of the direct effects of net-
works on changes in clinical performance, these results are also 
evaluated at the trial level, measured as the percentage of clinicians 
making the correct recommendations in their final responses per 
condition in each trial.

We conducted 84 independent trials of this study. All statistical 
analyses were conducted at the trial level. Our randomization 
scheme produced 56 trial-level observations in the network con-
dition, and 28 trial-level observations in the control condition 
(additional details in SI Appendix, Materials and Methods). Power 
calculations determined that 56 trials (each with 40 clinicians) in 
the network condition, and 28 trials (each with 40 clinicians) in 
the control condition, would have greater than 90% power to 
detect the anticipated effect size (Cohen’s d = 0.207) based on 
prior studies (15, 16, 18). We used the Wilcoxon rank sum test 
to compare the network and control condition; and we used the 
Wilcoxon signed-rank test to compare changes within each trial 
of each condition, paired at the trial level. The trial-level analyses 
controlled for statistical nonindependence among clinicians in the 
social network condition (SI Appendix, Materials and Methods) 
(15–18).

Fig. 1 shows the participant flow of this study. A total of 3,360 
invitations were sent through push notifications to clinicians to 
join the study via the App. Once clinicians clicked on the push 
notification, they were randomized to either the network or control 
condition via the App. Then, 2,240 clinicians were randomized to 
the network condition, and 1,120 clinicians were randomized to 
the control condition. After accounting for attrition and for clini-
cians who participated in multiple trials, 2,053 unique clinicians 
in total joined and completed the task in the network condition, 
and 888 unique clinicians in total joined and completed the task 
in the control condition. Only 30% of clinicians participated in 
multiple clinical cases, and clinicians participated in at most two 
of the seven clinical trials (see SI Appendix, Materials and Methods 
and Fig. S1 for randomization details on the intention-to-treat 
sample). There were no significant differences in clinician charac-
teristics across experimental conditions (Table 1).
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Results

Our findings show that the accuracy of diagnostic assessments 
significantly improved in both conditions. Over all trials, at base-
line, the average estimate accuracy was 76.8% (error of 23.2% 

points) in the independent control condition, and 76.3% in the 
network condition (error of 23.7% points), exhibiting no signif-
icant differences across conditions (P = 0.9, Wilcoxon rank sum 
test). By the final round, average accuracy increased to 79.3% 
(error of 20.9% points) in the control condition (+2.5% point 
improvement, P < 0.001), and 81.3% in the network condition 
(+5.0% point improvement, P < 0.001) (Wilcoxon signed-rank 
test, two-tailed). While the opportunity to revise based on inde-
pendent reflection led to a significant increase in the diagnostic 
accuracy in clinicians’ assessments, the network condition pro-
duced significantly greater increase in diagnostic accuracy, dou-
bling the percentage point improvement compared to the control 
condition (+2.5% point improvement, P < 0.01, Wilcoxon rank 
sum test, two-tailed).

Of paramount interest is how improvements in accuracy within 
structured information–sharing networks varied according to the 
quality of physicians’ initial responses. Were improvements pri-
marily among the best performing clinicians, or did structured 
information sharing serve to improve the performance of the ini-
tially least accurate clinicians? Most importantly, did improve-
ments by some come at the cost of significant reductions in the 
performance of others (e.g., as would emerge in an averaging 
process that increased the accuracy of the poorest performers, but 
reduced the accuracy of the best performers)? Fig. 2 shows that 
this did not happen. Overall changes in the accuracy of clinicians’ 
responses are shown from round 1 (initial response) to round 3 
(final response), for all clinicians according to the error of their 

Table 1. Participating clinicians’ characteristics across 
the two experiment conditions

Experiment Condition: n (%)
Network condition 

2053 Unique 
clinicians

Independent 
Control 888 

Unique clinicians

Gender
Male 63.2% 74.1%

Female 36.7% 25.8%

Date of NPI 
Assignment

2017 54.7% 52.2%

2013–2016 19.6% 23.8%

2009–2012 14.0% 15.0%

2005–2008 11.5% 8.8%

Primary Care 89.3% 84.3%

Independent 
Practice

25.4% 16.9%

Fig.  2. Differential improvement in diagnostic 
assessments comparing the network condition 
and the control condition. Differential effects 
of experimental conditions on changes in the 
accuracy of clinicians’ diagnostic assessment; 
circles represent the change from round 1 to 2, and 
triangles represent the total change from round 1 
to 3. Clinicians are grouped into quartiles based 
on the accuracy of their initial (round 1) diagnostic 
assessments, ranging from least accurate (Q1) to 
most accurate (Q4). Decentralized information–
sharing networks had the greatest effect on 
increasing accuracy of assessments among 
the initially least accurate clinicians. Change in 
accuracy is displayed as percentage points, where 
accuracy is represented from 0 to 100% using 
min–max normalization. Error bars represent 
95% CI.  Differences between conditions within 
each quartile, along with confidence intervals, are 
estimated using the Wilcoxon rank-sum test.D
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initial responses, which are broken down by quartiles (SI). 
Interestingly, the results show that networks did not produce a 
simple averaging effect. The most accurate clinicians, who were ini-
tially in the top quartile of diagnostic assessment accuracy (Q4) 
exhibited no significant effects of information-sharing networks—
showing no significant change in accuracy across experimental con-
ditions. Similarly, clinicians in the third quartile of accuracy (Q3) 
also showed no significant change in diagnostic accuracy (p = 0.39, 
Wilcoxon signed-rank test) across experimental conditions. However, 
in the lower half of the group, among clinicians in the second quar-
tile (Q2) lower performing clinicians in information-sharing net-
works significantly increased accuracy compared to clinicians in the 
control condition (+4.04% point increase, P < 0.04, Wilcoxon 
signed rank test, two-tailed). Similarly, the least accurate clinicians 
(Q1) showed the greatest differential between the control and the 
network condition. Diagnostic accuracy increased +14.5% points 
more in the network condition than in the control condition (P < 
0.001, Wilcoxon signed rank test, two-tailed). These results indicate 
that while the most accurate clinicians (Q3 and Q4) were not 
adversely affected by social influence, diagnostic accuracy among the 
least accurate clinicians (Q1 and Q2) significantly increased as a 
result of information-sharing networks.

The network mechanism that explains the improvements in 
clinicians’ diagnostic assessments is the disproportionate impact 
of accurate individuals in the process of belief revision within 
egalitarian social networks (15–18). As demonstrated in earlier 
studies of networked collective intelligence (17, 18), during the 
process of belief revision in decentralized information-sharing 
networks, there is an expected correlation between the accuracy 
of an individual’s beliefs and the magnitude of their belief revi-
sions, such that accurate individuals revise their responses less; 
this correlation between accuracy and revision magnitude is 
referred to as the “revision coefficient” (18). Within decentralized 
social networks, a positive revision coefficient has been found to 
give greater de facto social influence to more accurate individuals, 
which is predicted to produce network-wide improvements in 
the accuracy of individual beliefs within egalitarian social net-
works. In past studies, these improvements in collective accuracy 
have been found to result in a corresponding reduction in errors 
among initially inaccurate participants (16–18). Fig. 3 tests this 
prediction for clinicians in our study. The results show, as 
expected, that there is a significant positive revision coefficient 
among clinicians in the network condition (P < 0.001, 
Jonckheere–Terpstra test, two-tailed), indicating that less accurate 
clinicians made greater revisions to their responses while more 

accurate clinicians made smaller revisions, giving greater de facto 
influence in the social network to more accurate clinicians (See 
SI Appendix, Fig. S7, for additional details). All of these results 
are summarized in Table 2 (see SI Appendix, Table S1 for addi-
tional breakdown by vignette).

As predicted, improvements in assessment accuracy among 
clinicians translated directly into improvements in clinical treat-
ment recommendations, resulting in an increased likelihood of 
clinicians switching from an initially incorrect treatment recom-
mendation to the correct recommendation in their final response 
(P < 0.001, rs = 0.25). To examine the effects of information-sharing 
networks on the correctness of clinicians’ final treatment recom-
mendations, we evaluated the change in the proportion of clini-
cians providing the correct answer at round one versus round 
three. Overall, we found significant increases in the proportion of 

Fig. 3. Clinicians’ propensity to revise their diagnostic assessments in the 
network condition according to their initial diagnostic accuracy, binned by 
deciles (1 is least accurate, 10 is most accurate). Clinicians’ accuracy in their 
initial assessment significantly predicts the magnitude of their revisions to 
their diagnostic assessments from their initial to final response. Error bars 
display 95% CI.

Table 2. Summary statistics for outcome measures by initial assessment error quartiles and by experiment condi-
tions, averaged across trials at the individual level (see SI Appendix, Table S2 for trial level comparisons)

Experiment 
Condition

Initial Error 
Quartile

Initial 
Assessment 

Accuracy

Final 
Assessment 

Accuracy Change

Initial Rate  
in Correct 
Treatment

Final Rate  
in Correct 
Treatment Change

Control Q1 (error) 97.2 94.6 −2.60 0.80 0.81 +0.01

Control Q2 (error) 88.9 89.5 +0.05 0.45 0.51 +0.06

Control Q3 (error) 71.1 74.6 +3.50 0.34 0.38 +0.04

Control Q4 (error) 47.2 55.9 +8.70 0.25 0.32 +0.06

Network Q1 (error) 97.1 93.9 −3.16 0.76 0.78 +0.02

Network Q2 (error) 89.0 87.8 −1.22 0.44 0.48 +0.04

Network Q3 (error) 72.2 79.0 +6.84 0.33 0.43 +0.10

Network Q4 (error) 46.1 62.9 +16.9 0.23 0.35 +0.13
Notes: Q4 (error) denotes the group of clinicians who are in the highest quartile of error (bottom quartile of accuracy) for initial diagnostic assessment. Q2 (error), Q3 (error), and Q4  
(error) denote the second, the third, and the highest quartile of error, respectively.D
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clinicians providing the correct clinical recommendation, in both 
the control (by +4.3% points, P = 0.02, n = 28) and the network 
condition (+7.3% points, P < 0.0001, n = 56) (Wilcoxon signed 
rank test, two-tailed). Fig. 4 shows that for clinicians in the top 3 
quartiles (Q2, Q3, and Q4) there were no significant differences 
between the control and the network condition in the proportion 
of clinicians changing their recommendations from an incorrect 
recommendation to the correct treatment (P = 0.75 for Q4; P = 
0.82 for Q3; P = 0.4 for Q2). However, among the least accurate 
clinicians (Q1), there was a large and significant (+15% point, P < 
0.01, Student t test, two-tailed) increase from the control condition 
to the network condition in the fraction of clinicians who changed 
their responses from an initially incorrect treatment recommenda-
tion to the correct treatment recommendation in their final 
responses. These findings indicate that structured peer network 
influences on clinicians’ diagnostic risk assessments significantly 
improved the quality of clinicians’ treatment recommendations, 
particularly among poor performing clinicians.

Discussion

Our study differs from previous studies of collective medical decision-
making. Instead of using simulated retrospective analyses to aggregate 
clinical decisions into a wisdom of the crowd calculation (4, 6, 21–
23), we demonstrate how the network dynamics of medical collective 
intelligence may directly improve clinicians’ individual and collective 
clinical decision-making. Our control condition showed results con-
sistent with prior literature on collective intelligence, in which the 

average performance of an aggregated group of independent clini-
cians outperformed individual clinicians (sometimes referred to as 
the “wisdom of the crowd”) (18, 19, 24–27). Nevertheless, we found 
that the clinicians in the control condition were consistently outper-
formed by clinicians in the network condition, indicating that the 
network dynamics of social learning in structured egalitarian net-
works improved the medical collective intelligence found among 
groups of independent clinicians (16, 18). Within the network con-
dition, improvements in clinical decision-making were greatest 
among clinicians with the greatest initial error, while the best per-
forming clinicians retained their initial high-quality decision-making. 
Thus, we did not find a regression to the mean (18), in which the 
network dynamics that improved decision-making by the worst-
performing clinicians had a symmetrical “lowering” influence on the 
decision-making from the best-performing clinicians. An interesting 
direction for future research based on our findings is to explore the 
degree to which network learning among clinicians may engage dif-
ferent cognitive processes than those used by clinicians in the control 
condition, such as “fast” vs. “slow” thinking (i.e., system 1 vs. system 
2) (28). Further directions for future research include exploring the 
effects of different interaction technologies, such as chat tools, vid-
eoconferencing, etc., on the quality of clinical reasoning, as well as 
the interaction effects of providing participants with varying infor-
mation about the size of their network (21), and the resulting impact 
of these changes on improving versus reducing clinicians’ collective 
intelligence.

As with all experiments, the design of our study enabled a care-
ful identification of causal factors by limiting the behaviors that 

Fig.  4. Differential improvement in correct 
treatment recommendations comparing the 
network condition and the control condition. 
Differential effects of experimental conditions on 
changes in the proportion of clinicians providing 
the correct clinical recommendation, from round 
one to round three. Clinicians are grouped into 
quartiles based on the accuracy of their initial 
(round 1) diagnostic assessments, ranging 
from least accurate (Q1) to most accurate (Q4). 
Decentralized information–sharing networks had 
a significant effect on improving correct clinical 
recommendations among the initially least accurate 
clinicians. Error bars represent 95% CI.
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could be tested. We used case vignettes and therefore did not assess 
clinicians’ responses to actual patients. However, utilizing case 
vignettes is standard practice to assess clinician competency in 
clinical decision-making, such as during medical board certifica-
tion exams (29, 30). This methodological choice is particularly 
appropriate because our goal was to assess changes in the quality 
of clinicians’ real-time reasoning consistent with standard 
approaches of evaluating medical decision-making (31–33). Our 
design also enforced an egalitarian architecture for the 
information-sharing networks in our study. We used this archi-
tecture because it has been found in previous studies to improve 
the efficiency of social learning (15, 18). However, we acknowl-
edge that this egalitarian network architecture differs significantly 
from the information channels typically found in uncontrolled 
clinical settings, in which clinicians’ information-sharing networks 
often become highly centralized based on factors such as seniority, 
specialty and ranking in the medical community (34, 35). Previous 
studies have shown that while domain experts can increase group 
performance in some cases (11, 18, 36), increased network cen-
trality can amplify errors in individual judgment, leading to sig-
nificantly impaired social learning and reductions in collective 
intelligence (11, 17, 18). These results suggest that there may be 
unintended consequences of centralized information channels 
within uncontrolled medical contexts, which may possibly con-
tribute to increases in diagnostic errors and mistreatment in those 
settings (11, 37). An important feature of this study was the ability 
to control the design of the information-sharing networks among 
clinicians to identify the direct effects of egalitarian peer 
information-sharing networks on clinician performance. One 
implication of our findings is that approaches to implementing 
medical collective intelligence through information-sharing net-
works in clinical settings may need to give close attention to the 
structure of the information-sharing architecture that is used.

Although we did not focus on implementation within this 
study, we anticipate that our findings offer several important 
opportunities for integrating medical collective intelligence into 
clinical decision-making procedures. Diagnostic errors are increas-
ingly recognized as a critical source of error in healthcare, and were 
highlighted in a 2015 NASEM report on improving diagnosis (3). 
This report produced eight high-level recommendations to reduce 
diagnostic errors, two of which focused on the need for more 
effective collaboration and use of health information technologies 
to support the diagnostic process. Our findings provide evidence 
that effective collaboration channels for reducing diagnostic errors 
may be achieved through harnessing medical collective intelligence 
in real-time, egalitarian information-sharing networks. However, 
unlike the information-sharing channels that naturally occur in 
clinical communities, which are often based on consultations with 
senior clinicians, our study provides specific guidance on how to 
design a structured network architecture for health information 
technologies that is adapted to support improvements in diagnosis 
and treatment decision-making.

From a digital infrastructure perspective, the growing digitiza-
tion of healthcare has resulted in a healthcare information tech-
nology infrastructure that could be adapted to include collaboration 
networks identical to the ones created for this study (38–40). 
Importantly, clinician acceptance of an intervention like this is 
greatly facilitated by the fact that many clinicians are accustomed 
to submitting and reviewing clinical cases on digital platforms 
(41–48). Digital case platforms are used not only for training 
purposes but also within current clinical care in the form of elec-
tronic consultations, or e-consults (49, 50).

E-consult technologies have been increasingly adopted within 
underresourced health systems, especially those with limited access 

to specialties (49–51). Within e-consult platforms, clinicians 
describe a clinical case and then submit it electronically for con-
sultation with a specialist. Within a short timeframe (typically 24 
to 48 h), the specialist then replies with their recommendations, 
and the referring clinician can then consider these recommenda-
tions when providing care for the patient. As more health systems 
adopt e-consults, we anticipate it will be feasible to harness medical 
collective intelligence from decentralized information-sharing 
networks within e-consult platforms. We anticipate, for instance, 
that instead of sending clinical cases to a single specialist, clinicians 
may instead submit cases to a network of specialists who partici-
pate in a structured information exchange process before providing 
a recommendation to the referring clinician. The clinician could 
then use the network feedback to inform their decision-making, 
consistent with current e-consults practices. Our findings indicate 
that a proper implementation infrastructure, as described in our 
study, integrated within existing healthcare technologies may ena-
ble referring clinicians from any geographic location to benefit 
directly from the striking improvements in patient care that come 
from real-time engagement with medical collective intelligence, 
yet without requiring changes to the current e-consults experience 
or timeline.

Conclusion

Our study expands the growing field of research on medical col-
lective intelligence by identifying the direct implications of lever-
aging network dynamics of collective learning within egalitarian 
networks for improving individual clinician decision-making in 
real-time. Our findings have the potential to improve clinical 
decision-making procedures for both trainees and practicing clini-
cians. Given the growth of health information technologies in 
recent years, we expect future studies to expand on our findings by 
exploring how various specialties in clinical medicine may benefit 
from this approach, and how best to develop applications within 
the rapidly expanding space of healthcare infrastructure and infor-
mation technology.

Materials and Methods

Participants were randomly assigned to one of two conditions: i) the “control 
condition” where clinicians provided diagnostic assessment estimates on their 
own, without any exposure to the estimates of other clinicians, or ii) the “net-
work” condition, where clinicians were shown the average diagnostic estimates 
of other clinicians in a structured social media network. Each condition in each 
trial contained 40 clinicians. We conducted 56 independently replicated trials 
in the network condition, and 28 independently replicated trials in the control 
condition. If placed into a network condition, participants were randomly assigned 
to one node in a single network, and they maintained this position throughout 
the experiment. The network condition used a random network topology of 40 
nodes with four edges per node. The same network topology was used across all 
trials in the network condition.

In each trial of each condition, clinicians were presented with a patient vignette 
and were asked to make an assessment about the medical condition of a patient 
by providing a probability estimate from 0 to 100 (SI Appendix, Stimuli Design 
and Clinical Vignettes). After providing a probability estimate, clinicians selected 
a treatment option from a dropdown menu specifying different courses of action. 
In the network condition, clinicians were not shown the treatment decisions made 
by other clinicians as a social signal; only the average probability estimate of each 
participant’s network neighbors was shown.

Upon registration, clinicians were encouraged to try five diagnostic challenges. 
Clinicians were able to try more than five challenges at their discretion by respond-
ing to push notifications when they were invited, but no clinician was invited to 
try the same vignette more than once. Each time clinicians arrived at a challenge, 
they were randomized between the control and the network condition. Because 
our statistical tests are based on between-participant comparisons and because D
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participants were always randomized to conditions, our results are robust to 
repeated participants across trials.

This study was approved by the University of Pennsylvania’s Institutional 
Review Board, where the data collection for this study was based. All participants 
provided digital informed consent through the app before participating.

Data, Materials, and Software Availability. All data and code associated 
with this study can be downloaded at the following GitHub, https://github.
com/drguilbe/CIdiagnosis (52). Anonymized spreadsheet with anonymized 
participant responses per round data have been deposited in https://github.
com/drguilbe/ (53). All study data are included in the article and/or supporting 
information.

ACKNOWLEDGMENTS. D.C. gratefully acknowledges support from a Robert 
Wood Johnson Foundation Pioneer Grant, #73593 (D.C.). We thank Alan Wagner 
for App development assistance, Sijia Yang, Soojong Kim, Alvin Zhou, Subo Sui 

and Angela Won for research assistance, and Sarah Wood, John Jemmott, Arnout 
van de Rijt, Urmimala Sarkar, Arnie Milstein, Lori Melichar, Kevin Volpp, David 
Asch, and members of the CHIBE-PAIR Annual Roybal Retreat, for helpful com-
ments and suggestions that improved this article.

Author affiliations: aAnnenberg School for Communication, University of Pennsylvania, 
Philadelphia, PA 19104; bSchool of Engineering and Applied Sciences, University of 
Pennsylvania, Philadelphia, PA 19104; cLeonard Davis Institute of Health Economics, 
University of Pennsylvania, Philadelphia, PA 19104; dNetwork Dynamics Group, University 
of Pennsylvania, Philadelphia, PA 19104; eSchool of Management, University College 
London, London E14 5AA, United Kingdom; fDepartment of Communication, University 
of California, Davis, CA 95616; gPenn Medicine Center for Health Equity Advancement, 
University of Pennsylvania Health System and Perelman School of Medicine, University 
of Pennsylvania, Philadelphia, PA 19104; hHaas School of Management, University of 
California, Berkeley, CA 94720; iCenter for Vulnerable Populations at San Francisco 
General Hospital, University of California, San Francisco, CA 94110; and jDivision of 
General Internal Medicine at San Francisco General Hospital, University of California, San 
Francisco, CA 94110

1.	 L. L. Leape et al., The nature of adverse events in hospitalized patients: Results of the harvard 
medical practice study II. N. Engl. J. Med. 324, 377–384 (1991).

2.	 R. M. Wachter, Why diagnostic errors don’t get any respect—And what can be done about them. 
Health Affairs 29, 1605–1610 (2010).

3.	 “Committee on diagnostic error in health care, Board on health care services, Institute of medicine, 
The national academies of sciences, engineering, and medicine, improving diagnosis” in Health 
Care, E. P. Balogh, B. T. Miller, J. R. Ball, Eds. (National Academies Press, US, 2015) (January 5, 2023).

4.	 R. H. J. M. Kurvers et al., Boosting medical diagnostics by pooling independent judgments. Proc. 
Natl. Acad. Sci. U.S.A. 113, 8777–8782 (2016).

5.	 M. W. Kattan, C. O’Rourke, C. Yu, K. Chagin, The wisdom of crowds of doctors: Their average 
predictions outperform their individual ones. Med. Decis. Making 36, 536–540 (2016).

6.	 R. H. J. M. Kurvers, J. Krause, G. Argenziano, I. Zalaudek, M. Wolf, Detection accuracy of collective 
intelligence assessments for skin cancer diagnosis. JAMA Dermatol. 151, 1346–1353 (2015).

7.	 M. Wolf, J. Krause, P. A. Carney, A. Bogart, R. H. J. M. Kurvers, Collective intelligence meets medical 
decision-making: The collective outperforms the best radiologist. PLoS One 10, e0134269 (2015).

8.	 L. Ronzio, A. Campagner, F. Cabitza, G. F. Gensini, Unity is intelligence: A collective intelligence 
experiment on ECG reading to improve diagnostic performance in cardiology. J. Intell. 9, 17 (2021).

9.	 R. M. Poses, C. Bekes, R. L. Winkler, W. E. Scott, F. J. Copare, Are two (inexperienced) heads better 
than one (experienced) head? Averaging house officers’ prognostic judgments for critically ill 
patients. Arch. Intern. Med. 150, 1874–1878 (1990).

10.	 K. Radcliffe, H. C. Lyson, J. Barr-Walker, U. Sarkar, Collective intelligence in medical decision-making: 
A systematic scoping review. BMC Med. Inform Decis. Mak. 19, 158 (2019).

11.	 D. Centola, The network science of collective intelligence. Trends Cogn. Sci. 26, 923–941 (2022).
12.	 V. Fontil et al., Testing and improving the acceptability of a web-based platform for collective 

intelligence to improve diagnostic accuracy in primary care clinics. JAMIA Open 2, 40–48 (2019).
13.	 E. C. Khoong et al., Impact of digitally acquired peer diagnostic input on diagnostic confidence in 

outpatient cases: A pragmatic randomized trial. J. Am. Med. Inform Assoc 28, 632–637 (2021).
14.	 W. E. Hautz, J. E. Kämmer, S. K. Schauber, C. D. Spies, W. Gaissmaier, Diagnostic performance by 

medical students working individually or in teams. JAMA 313, 303 (2015).
15.	 D. Guilbeault, D. Centola, Networked collective intelligence improves dissemination of scientific 

information regarding smoking risks. PLoS One 15, e0227813 (2020).
16.	 D. Guilbeault, J. Becker, D. Centola, Social learning and partisan bias in the interpretation of climate 

trends. Proc. Natl. Acad. Sci. U.S.A. 115, 9714–9719 (2018).
17.	 J. Becker, E. Porter, D. Centola, The wisdom of partisan crowds. Proc. Natl. Acad. Sci. U.S.A. 116, 

10717–10722 (2019).
18.	 J. Becker, D. Brackbill, D. Centola, Network dynamics of social influence in the wisdom of crowds. 

Proc. Natl. Acad. Sci. U.S.A. 114, E5070–E5076 (2017).
19.	 D. Centola, D. Guilbeault, U. Sarkar, E. C. Khoong, J. Zhang, The reduction of race and gender bias in 

clinical treatment recommendations using clinician peer networks in an experimental setting. Nat. 
Commun. 12, 6585 (2021).

20.	 S. G. Pauker, J. P. Kassirer, The threshold approach to clinical decision making. N. Engl. J. Med. 302, 
1109–1117 (1980).

21.	 B. Jayles, C. Sire, R. H. J. M. Kurvers, Impact of sharing full versus averaged social information on 
social influence and estimation accuracy. J. R. Soc. Interface 18, 20210231 (2021).

22.	 M. L. Barnett, D. Boddupalli, S. Nundy, D. W. Bates, Comparative accuracy of diagnosis by collective 
intelligence of multiple physicians vs individual physicians. JAMA Netw. Open 2, e190096 (2019).

23.	 H. L. Semigran, D. M. Levine, S. Nundy, A. Mehrotra, Comparison of physician and computer 
diagnostic accuracy. JAMA Intern. Med. 176, 1860 (2016).

24.	 J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective 
Wisdom Shapes Business, Economies, Societies, and Nations (Doubleday, ed. 1st, 2004).

25.	 SE Page, The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and 
Societies (Princeton University Press, 2007).

26.	 J. Lorenz, H. Rauhut, F. Schweitzer, D. Helbing, How social influence can undermine the wisdom of 
crowd effect. Proc. Natl. Acad. Sci. U.S.A. 108, 9020–9025 (2011).

27.	 S. Farrell, Social influence benefits the wisdom of individuals in the crowd. Proc. Natl. Acad. Sci. 
U.S.A. 108, E625 (2011).

28.	 D. Kahneman, G. Klein, Conditions for intuitive expertise: A failure to disagree. Am. Psychol. 64, 
515–526 (2009).

29.	 T. A. Brennan et al., The role of physician specialty board certification status in the quality movement. 
JAMA 292, 1038 (2004).

30.	 American board of medical specialties (2022). https://www.abms.org/.
31.	 S. C. Evans et al., Vignette methodologies for studying clinicians’ decision-making: Validity, utility, 

and application in ICD-11 field studies. Int. J. Clin. Health Psychol. 15, 160–170 (2015).
32.	 J. Sheringham, I. Kuhn, J. Burt, The use of experimental vignette studies to identify drivers of 

variations in the delivery of health care: A scoping review. BMC Med. Res. Methodol. 21, 81 (2021).
33.	 L. M. Bachmann et al., Vignette studies of medical choice and judgement to study caregivers’ 

medical decision behaviour: Systematic review. BMC Med. Res. Methodol. 8, 50 (2008).
34.	 N. L. Keating, J. Z. Ayanian, P. D. Cleary, P. V. Marsden, Factors affecting influential discussions among 

physicians: A social network analysis of a primary care practice. J. Gen. Intern. Med. 22, 794–798 
(2007).

35.	 P. Zappa, The network structure of knowledge sharing among physicians. Qual. Quant. 45, 
1109–1126 (2011).

36.	 A. Almaatouq et al., Adaptive social networks promote the wisdom of crowds. Proc. Natl. Acad. Sci. 
U.S.A. 117, 11379–11386 (2020).

37.	 N. K. Choudhry, R. H. Fletcher, S. B. Soumerai, Systematic review: The relationship between clinical 
experience and quality of health care. Ann. Intern. Med. 142, 260 (2005).

38.	 J. Adler-Milstein, A. K. Jha, HITECH Act drove large gains in hospital electronic health record 
adoption. Health Affairs 36, 1416–1422 (2017).

39.	 S. T. Mennemeyer, N. Menachemi, S. Rahurkar, E. W. Ford, Impact of the HITECH Act on physicians’ 
adoption of electronic health records. J. Am. Med. Inform. Assoc. 23, 375–379 (2016).

40.	 N. J. Zhang et al., Health information technology adoption in U.S. acute care hospitals. J. Med. Syst. 
37, 9907 (2013).

41.	 A. N. D. Meyer, C. A. Longhurst, H. Singh, Crowdsourcing diagnosis for patients with undiagnosed 
illnesses: An evaluation of CrowdMed. J. Med. Internet Res. 18, e12 (2016).

42.	 A. Kalaichandran, Can we crowdsource a diagnosis? The BMJ opinion, March 3 2020. https://blogs.
bmj.com/bmj/2020/03/03/amitha-kalaichandran-can-we-crowdsource-a-diagnosis/. Accessed 6 
January 2023.

43.	 Medscape, Medscape reference case submissions. https://help.Medscape.medscape.com/hc/en-us/
articles/360012434272-Medscape-Reference-Case-Submissions. Accessed 6 January 2023.

44.	 R. Stretch, How medical crowdsourcing empowers patients & doctors. Rendia, 2023. https://rendia.
com/resources/insights/medical-crowdsourcing/. Accessed 6 January 2023.

45.	 Crowdmed, https://www.crowdmed.com/ (2023).
46.	 HumanDx, https://www.humandx.org/ (2023).
47.	 Sermo, https://www.sermo.com/ (2023).
48.	 O. Khazan, Doctors get their own second opinions. The atlantic, Oct.10, 2017. https://www.

theatlantic.com/health/archive/2017/10/doctors-get-their-own-second-opinions/542463/. Accessed 
6 January 2023.

49.	 M. Knox, E. J. Murphy, T. Leslie, R. Wick, D. S. Tuot, e-Consult implementation success: Lessons from 
5 county-based delivery systems. Am. J. Manag. Care 26, e21–e27 (2020).

50.	 V. G. Vimalananda et al., Electronic consultations (e-consults) to improve access to specialty care: A 
systematic review and narrative synthesis. J. Telemed. Telecare. 21, 323–330 (2015).

51.	 L. C. Zandbelt, F. E. C. de Kanter, D. T. Ubbink, E-consulting in a medical specialist setting: Medicine 
of the future? Patient Educ. Couns. 99, 689–705 (2016).

52.	 D. Centola et al., CIdiagnosis: Main Experimental Data (“CIP_experimental_final.csv”). Github. 
https://github.com/drguilbe/CIdiagnosis/blob/main/CIP_experimental_final.csv. Deposited 24 
April 2023.

53.	 D. Centola et al., CIdiagnosis: Clinician Demographics Data. (“CIP_demographics.csv”). Github. https://
github.com/drguilbe/CIdiagnosis/blob/main/CIP_demographics.csv. Deposited 24 April 2023.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
07

.1
33

.2
07

.1
08

 o
n 

Ju
ly

 2
4,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
10

7.
13

3.
20

7.
10

8.

https://github.com/drguilbe/CIdiagnosis
https://github.com/drguilbe/CIdiagnosis
https://github.com/drguilbe/
https://github.com/drguilbe/
http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2108290120#supplementary-materials
https://www.abms.org/
https://blogs.bmj.com/bmj/2020/03/03/amitha-kalaichandran-can-we-crowdsource-a-diagnosis/
https://blogs.bmj.com/bmj/2020/03/03/amitha-kalaichandran-can-we-crowdsource-a-diagnosis/
https://help.Medscape.medscape.com/hc/en-us/articles/360012434272-Medscape-Reference-Case-Submissions
https://help.Medscape.medscape.com/hc/en-us/articles/360012434272-Medscape-Reference-Case-Submissions
https://rendia.com/resources/insights/medical-crowdsourcing/
https://rendia.com/resources/insights/medical-crowdsourcing/
https://www.crowdmed.com/
https://www.humandx.org/
https://www.sermo.com/
https://www.theatlantic.com/health/archive/2017/10/doctors-get-their-own-second-opinions/542463/
https://www.theatlantic.com/health/archive/2017/10/doctors-get-their-own-second-opinions/542463/
https://github.com/drguilbe/CIdiagnosis/blob/main/CIP_experimental_final.csv
https://github.com/drguilbe/CIdiagnosis/blob/main/CIP_demographics.csv
https://github.com/drguilbe/CIdiagnosis/blob/main/CIP_demographics.csv

	Experimental evidence for structured information–sharing networks reducing medical errors
	Significance
	Experimental Design
	Analysis Approach
	Results
	Discussion
	Conclusion
	Materials and Methods
	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 22



