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Supplementary Methods 

 

Revising prior measures of bridge width to quantify locally sufficient bridges  

Earlier work defined the width of a bridge in terms of the number of overlapping ties between two 

adjacent neighborhoods on a one-dimensional lattice (1). Let N[i] refer to the inclusive (i.e., closed) 

neighborhood of node i, defined as the induced subgraph of G including all vertices adjacent to i, 

along with i. A bridge between neighborhoods N[i] and N[j] was defined as the set of ties between 

the set of common members of neighborhoods N[i] and N[j], referred to as Iij, and the disjoint set 

containing the members of N[i] that are not in N[j], referred to as Dij. The width of a bridge was 

defined as the size of the set of ties from Iij to Dij. 

 

 

Supplementary Figure 1. Visualizing non-overlapping neighborhoods 

connected by a sufficiently wide bridge. A schematic display of an edge case for 

the original bridge width measure based on adjacent neighborhoods. Two 

connected but non-adjacent neighborhoods are highlighted by different colors: the 

seed node i is colored red, and members of i's neighborhood are indicated by a red 

outer ring, while target node m is colored blue, and members of m's neighborhood 

are indicated by a blue outer ring.  

 

A key limitation of this definition is that it does not generalize beyond adjacent neighborhoods; 

that is, when Iij = ∅ (when two neighborhoods have no overlapping members). As a result, this 

measure has the problem that, even when two neighborhoods are directly connected, it identifies 
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the size of the bridge between these two neighborhoods as 0, while a complex contagion can spread 

between them. Supplementary Figure 1 displays one of these edge cases, where two neighborhoods 

share no overlapping members, even though a complex contagion can spread between them.  

 

 

Supplementary Figure 2. Visualizing the measure of bridge width across a 

variety of neighborhood configurations. These configurations include 

overlapping and non-overlapping neighborhoods, as well as neighborhoods that are 

and are not connected by a sufficiently wide bridge. Tj refers to the adoption 

threshold of target node j. Oij refers to the overlap between the inclusive 

neighborhoods of node i and j. Rij refers to the size of the reinforcement set 

connecting the neighborhoods of node i and j. BWij refers to the width of the bridge 

connecting node i to node j. See the “Methods” section of the main text for the 

formal definition for each of the terms visualized.  

 

For this reason, we updated the definition of bridge width to account for cases where two 

neighborhoods are connected, but share no overlapping members, allowing the measure of bridge 

width to generalize beyond lattices. We develop the following logic for identifying when a 

sufficient bridge exists that can spread a contagion between two neighborhoods, which share 

connections but are not necessarily adjacent. Supplementary Figure 2 provides a visual display of 

how our approach accurately characterizes the width of bridges for both adjacent and non-adjacent 

but connected neighborhoods. As stated in the main text, for a contagion with an adoption 
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threshold Tj, a locally sufficient bridge (i.e., a bridge that enables diffusion) exists from node i's 

neighborhood to node j’s neighborhood if (and only if) the following conditions are met.  

 

Let N[i] refer to the inclusive neighborhood of node i, defined as the induced subgraph of G 

including all vertices adjacent to i, along with i.  

 

Let E(N[i]) indicate the edge set of the neighborhood of node i, including all ties to i within 

N[i]. 

 

Let Tj refer to the adoption threshold of node j (i.e., the number or fraction of activated peers 

that node j needs to encounter to adopt).  

 

Let Oij refer to the overlap (intersection) between N[i] and N[j], i.e., Oij ≡ N[i] ∩ N[j]. 

 

Let Dij refer to the disjoint set of nodes in N[j] that are not in N[i] , such that ∀v(v ∈ Dij → v ∈  

N[j] ∧ v ∉ N[i]) 

 

Let Rij refer to the “reinforcement” set of nodes, which consists of the nodes in Dij that are 

connected to the nodes in N[i]. Formally, ∀v(v ∈ Rij → v ∈ Dij ∧ |E(N[i]) ∩ E(N[v])| ≥ 1). 

 

Let the bridge between node i and j be defined as the union of Oij and Rij, i.e. BWij ≡ Oij ⋃ Rij. 

 

Let the width of the bridge between i and j be defined as Wij, where Wij ≡ |BWij| (the cardinality 

of the bridge between i and j). 

 

Under the above definitions, the bridge between N[i] and N[j] can support the spread of a 

contagion – i.e. the bridge is locally sufficient – if Wij is greater than or equal to Tj. 

 

We ascribe every bridge in G a binary value indicating whether the bridge is sufficiently wide 

to enable diffusion. We indicate this binary value in notation by placing sharp brackets around 

the term for bridge width:  

 

                                                           [Wij] ≡  {
1 𝑖𝑓 Wij ≥ 𝑇j

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                             (1) 

 

The above definition of bridge width can be readily adapted to heterogeneous distributions of 

thresholds by requiring that Rij contain only of nodes from Dij that can be activated by N[i]. 
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Specifically, this requires that we keep each node x in Rij only if Oix ≥ Tx – i.e., if there are enough 

ties from N[i] to satisfy Tx. 

 

The Add Health Dataset 

The Add Health dataset was constructed from an in-school survey, administered to 90,118 

students from 84 distinct communities throughout the US in 1994-1995 (2). All network data is 

publicly available at the following github: https://github.com/drguilbe/complexpaths.1 The survey was 

designed to gather data on students’ social networks. Each student was given a paper-and-pencil 

questionnaire and a copy of a roster listing every student in the school and, if the community had 

two schools, the students were provided with the roster of the “sister” school. Students were 

asked to “List your closest (male/female) friends. List your best (male/female) friend first, then 

your next best friend, and so on. (Girls/boys) may include (boys/girls) who are friends and 

(boy/girl) friends”. This dataset was chosen for the purposes of our study because the social 

networks represent empirically grounded peer networks with significant topological variation. 

 

 
1 The data and code for replicating this study can be cited as: Guilbeault, D., & Centola, D. Topological Measures for 
Identifying and Predicting the Spread of Complex Contagions. drguilbe/complexpaths: First Release (Version 
v1.0.0). Zenodo. http://doi.org/10.5281/zenodo.5019663 (2021). 

https://github.com/drguilbe/complexpaths
http://doi.org/10.5281/zenodo.5019663
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Supplementary Figure 3. Topological properties of the 74 networks used from 

the Add Health dataset for the empirical simulation analysis. (A) A histogram 

displaying the distribution of network sizes across all Add Health networks; (B) A 

histogram displaying the distribution of average degree across all Add Health 

networks; (C) A histogram displaying the distribution of average simple path length 

across all Add Health networks; (D) A histogram displaying the distribution of 

clustering coefficients across all Add Health networks.  

 

For each network in the Add Health dataset, we extracted the largest connected component on 

which to simulate diffusion and compare different centrality-based seeding strategies. 8 of the 82 

networks could not be converted into single connected components, leaving 74 networks 

available for analysis. The networks varied along several topological dimensions, including size 

(min. = 25, max. = 2152, μ = 814, σ = 529), average degree (min. = 3.87, max. = 14, μ = 7.32, σ 

= 1.63), average clustering coefficient (min. = .1, max. = .58, μ = .27, σ = .08), and average 

simple path length (min. = 1.8, max. = 7.46, μ = 4.32, σ = 1.05), (Supplementary Figure 3).  
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Design of the simulated diffusion experiment using the Add Health dataset 

For each viable network in the Add Health dataset, we simulated diffusion separately using six 

seeding strategies: (i) the “complex” seeding strategy, where diffusion was initiated using the 

seed node identified as having the highest complex centrality; (ii) the “degree” seeding strategy, 

where diffusion was initiated using the seed node identified as having the highest degree 

centrality; (iii) the “betweenness” seeding strategy, where diffusion was initiated using the seed 

node identified as having the highest betweenness centrality; (iv) the “eigenvector” seeding 

strategy, where diffusion was initiated using the seed node identified as having the highest 

eigenvector centrality; (v) the “k-core” seeding strategy, where diffusion was initiated using the 

seed node identified as having the highest coreness; and (vi) the “percolation” seeding strategy, 

where diffusion was initiated using the seed node identified as having the highest percolation 

centrality. In all cases, diffusion was initiated with a seeding budget of Ti, where the seed node 

and Ti – 1 of the nodes in its neighborhood were initially activated (if a node’s neighborhood 

contained more than Ti – 1, than Ti – 1 nodes from this neighborhood were randomly selected as 

the initial seed set, along with the seed node). In cases where more than one seed node was 

identified as having the highest centrality according to any of the measures, we randomly 

selected one of the nodes to be the seed.  
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Supplementary Figure 4. A schematic representing the design of the simulated 

diffusion experiment on the Add Health network dataset. ID., identity of 

network.   

 

For each network and each seeding strategy, we ran simulations using thresholds ranging 

from minimal complexity (Ti = 2) to maximal complexity (Ti = 6). (For Ti > 6, we observed 

minimal to no spreading across all networks.) Specifically, for each seeding strategy, we 

conducted diffusion trials for each threshold value, Ti ∈ {2,3,4,5,6}, on each of the 74 empirical 

social networks taken from the Add Health dataset (Supplementary Figure 4). For each network 

and threshold value, we produced six datapoints (representing the number of final adopters) 

corresponding to the six distinct seeding strategies. Since we tested each simulation strategy on 

each network for each value of Ti ∈ {2,3,4,5,6}, thus producing 30 datapoints for each network, 

we arrived at 2220 datapoints in total, including all seeding strategies. To average the diffusion 

outcomes across different homogeneous thresholds on the same network, we first normalize the 

diffusion outcomes across seeding strategies for each threshold to a 0 to 1 scale using min-max 

normalization (see “Statistical analysis”). We then average the diffusion outcomes for each 

seeding strategy across all threshold values for each network, such that each network is 
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associated with an average normalized number of adopters for each seeding strategy, giving 74 

datapoints for each seeding strategy (one for each network), and 444 datapoints in total. 

 

The BSS Microfinance Dataset (Banerjee et al. 2013) 

The BSS Microfinance Dataset derives from Banerjee et al. (2013), who collected information 

about social networks and tracked the adopters of a microfinance program (referred to as the 

Bharatha Swamukti Samsthe, BSS, program) among all households in 43 distinct villages (3). In 

each of the villages, the microfinance program was first introduced to the town leaders, who 

were asked to organize a meeting at which their followers could be informed about the 

microfinance program and its benefits. Banerjee et al. monitored whether each household in each 

village adopted the microfinance program overtime, with the ability to link their adoption of the 

BSS program to each household’s position in the village’s social network, both with respect to 

the leaders who seeded the program, and also with respect to the households without leaders that 

adopted and provided reinforcement for other households to follow suit.  
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Supplementary Figure 5. Topological properties of the 43 villages used from 

the BSS dataset on the diffusion of microfinance in rural villages in India 

collected by Banerjee et al. (2013). (A) A histogram displaying the distribution of 

village sizes across all villages; (B) A histogram displaying the distribution of 

average degree across all villages; (C) A histogram displaying the distribution of 

average simple path length across all villages; (D) A histogram displaying the 

distribution of clustering coefficients across all villages.  

 

To measure the social network structure of each village, Banerjee et al. administered surveys to 

each household, which identified social relations across twelve dimensions: those who visit the 

respondent's home, those whose homes the respondent visits, kin in the village, nonrelatives with 

whom the respondent socializes, those from whom the respondent receives medical advice, those 

from whom the respondent would borrow money, those to whom the respondent would lend 

money, those from whom the respondent would borrow material goods (e.g., kerosene and rice), 

those to whom the respondent would lend material goods, those from whom the respondent gets 
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advice, those to whom the respondent gives advice, and those with whom the respondent goes to 

pray (at a temple, church, or mosque). Banerjee et al. showed how all of these measures can be 

combined to form a single binary, bidirectional network, where two households are represented as 

being connected by a single tie if they are connected through at least one of the twelve social 

dimensions above. A unique strength of this dataset is that Banerjee et al.’s survey also associated 

each household with a range of demographic and socioeconomic variables – such as the number 

of beds in the household and whether it has electricity – which can be used as statistical controls 

when estimating the effect of node centrality on the ability for households to trigger adoption of 

the BSS program among their network peers.  

For each village in the BSS dataset, we extracted the largest connected component on 

which to simulate diffusion and then use each centrality measure to predict empirical signatures of 

diffusion as recorded by Banerjee et al. (2013). This preprocessing stage left 43 villages remaining 

on which we implemented our tests. Supplementary Figure 5 demonstrates that the villages in 

Banerjee et al.’s study exhibited notable topological variation in terms of size (min. = 75, max. = 

341, μ = 186, σ = 56), average degree (min. = 13, max. = 28, μ = 19, σ = 3.31), average simple 

path length (min. = 2.29, max. = 3.31, μ = 2.74, σ = 0.22), and clustering coefficient (min. = 0.12, 

max. = 0.36, μ = 0.21, σ = .05). We are grateful to Youm et al. (2021) for making an organized 

version of the Banerjee et al. (2013) dataset readily available and structured for analysis (4).  
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Supplementary Figure 6. A schematic representing the method of analysis for 

calculating node centrality in each rural village from the Banerjee et al. (2013) 

dataset. We calculate the average complex centrality of each node across a range 

of T regimes, i.e., where all nodes in the population are ascribed the same Ti from 

the range, T=2, T=3, T=4, T=5, T=6. All other centrality metrics are independent 

of Ti and are calculated once on the adjacency matrix of each village. vid, Village 

identity; homog., homogeneous.  

 

Since it is not possible to directly determine the empirical adoption thresholds that 

characterized each household’s willingness to adopt, we calculate a household’s expected complex 

centrality as its average centrality across a range of adoption thresholds. This methodology is 

displayed in Supplementary Figure 6. We first simulate diffusion from each household while 

holding the thresholds of all households constant across a range of absolute adoption thresholds, 

from Ti = 2 to Ti =6. For example, we set the adoption threshold of each household to Ti = 2 and 

then we simulate diffusion when seeding from each possible household. Similar to our Add Health 

simulation, we adopt a clustered seeding approach. We take the same approach for each Ti from Ti 

= 2 to Ti = 6. In each case, when activating a given household as the seed, we set the number of 

nodes to activate from the seed’s neighborhood to Ti – 1, identical to our simulated experiments 

on the Add Health dataset. We then take the average of each household’s complex centrality under 

each value of Ti. As the final step, for each village, we identify the household with the highest 
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centrality according to each extant centrality measure – degree, eigenvector, betweenness, k-core, 

and percolation – in addition to identifying the node with the highest average complex centrality. 

To evaluate our predictions, we compare the ability for each centrality measure to identify 

influential households, where an empirical measure of household influence is determined by 

measuring the fraction of a household’s neighbors who adopted after the seed household adopted 

(see Supplementary Table 1 and Supplementary Table 2 for full details on our statistical approach).  

 

Statistical analysis 

To average and compare the results of seeding strategies in the case of homogeneous thresholds 

(where diffusion outcomes vary significantly by Ti for all seeding strategies), we first normalize 

the diffusion outcomes across all possible nodes for each network and each value of Ti. We use 

min-max normalizations to standardize diffusion outcomes to a scale from 0 to 1, thus enabling 

us to average diffusion outcomes across networks with different homogeneous Ti distributions, 

while preserving the capacity to clearly identify which seeding strategy performed the best. Min-

max normalization in implemented using the following formula:  

 

 

We then average the normalized diffusion outcomes across networks based on seeding strategies 

to produce an aggregate representation of which seeding strategy performed best across a full 

range of threshold conditions. Network conditions that involved heterogeneously distributed 

thresholds did not require normalization.  

For the purposes of visualization in Fig. 3, we use min-max normalization to standardize 

the number of adopters generated across all seeding strategies, holding the network and threshold 
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constant. This allows us to rank seeding strategies for each network-threshold configuration in 

terms of their diffusion success, where the seeding strategy with the maximum number of 

adopters from the set of simulation results across seeding strategies is normalized to 1. Similar to 

the definition of betweenness centrality (5), we also display the values of complex centrality (on 

the x-axis) using min-max normalization. We then average the rankings for each seeding strategy 

across all threshold values for each network, such that each network is associated with an 

average normalized number of adopters for each seeding strategy, giving 74 datapoints for each 

seeding strategy (one for each network), and 444 datapoints in total.  

 To compare the diffusion outcomes of different seeding strategies in our analysis of the 

Add Health data, we use the nonparametric Wilcoxon Signed Rank Test, which is a paired test 

that compares the ranks of each seeding strategy, paired at the level of each trial in our 

simulation experiment (where each trial refers to simulated diffusion with a specific fixed 

threshold applied to a specific network). That is, when comparing two seeding strategies, this test 

first determines whether a given seeding strategy gave rise to more adopters than another seeding 

strategy for each network, under each value of Ti (which is held constant for all nodes in each 

graph). Across networks, this measure reveals the number of times that one seeding strategy gave 

rise to more adopters than another strategy (i.e., was ranked higher) across all networks. This test 

then determines whether the network-level rankings between two conditions are equivalent, or 

whether they significantly differ. A significant p-value in this case indicates that one seeding 

strategy gave rise to significantly more adopters on average than another seeding strategy. We 

use the two-tailed version of the Wilcoxon Signed Rank Test.  
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In all cases where betweenness centrality (5,6) is calculated in this study, it is calculated 

based on the standard equation, where the betweenness centrality of a node v is given by the 

expression:  

 

 

where σ is the total number of shortest paths from node s to node t and σst(v) is the number of 

those paths that pass through v. As is standard, we normalize betweenness centrality such that g 

∈ [0,1] using min-max normalization.  

In all cases where eigenvector centrality (6) is calculated in this study, it is calculated 

based on the standard equation. For a given graph G:= (V, E) with |V| vertices, let A = (av,t) be 

the adjacency matrix, such that av,t  = 1 if vertex v is linked to vertex t, and av,t  = 0 otherwise. 

Under eigenvector centrality, the relative centrality, x, score of vertex v can is defined as:  

 

 

 

where M(v) is the set of neighbors of v and λ is a constant. Rearranged, this can be expressed in 

vector notation as the eigenvector equation: Ax = λx.  

 In all cases where degree centrality is calculated in this study, it is calculated as per 

standard methodology, simply as the absolute number of connections held by a particular node 

(6); or, more formally, for a given node i, degree centrality is calculated as the number of cells in 
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the adjacency matrix A such that ai,j = 1, divided by 2 in the context of unweighted symmetrical 

ties, to adjust for symmetries in the adjacency matrix.  

 The measure of clustering coefficient in this work refers to the standard global clustering 

coefficient (6) based on triplets of nodes. An open triplet refers to three nodes where only two 

are connected, leaving one pair of nodes in the triplet unconnected (hence open). A closed triplet 

consists of three nodes that are all connected to each other by undirected ties. The global 

clustering coefficient uses the proportion of closed to open triplets in a graph as a measure for 

the average amount of peer reinforcement possible over a whole graph. Formally, it is defined as:  

 

 

 

 As a robustness test, we compare complex centrality seeding to less popular seeding 

methods that are nevertheless still based on simple path length – i.e., closeness centrality and 

reach centrality. Closeness centrality is defined as the reciprocal sum of the length of the shortest 

(simple) paths between a given node and all other nodes in a graph. Thus, the more central a 

node, the closer it is to all other nodes (according to the metric of distance supplied by simple 

path length). Formally, closeness is defined as (7):  

 

where d(y, x) is the distance between vertices x and y. When speaking of closeness centrality, it is 

often represented in its normalized form which represents the average length of the shortest paths 
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instead of their sum, as given by the previous formula multiplied by N – 1, where N is the 

number of nodes in the graph. 

 

This normalization adjustment allows comparisons between nodes of graphs of different sizes.  

 Reach centrality is a recent measure of centrality that seeks to capture the proportion of 

other nodes on a graph that are ‘reachable’ in a diffusion process from a given node (8). The 

measure, as such, is defined assuming a simple model of contagion, where target nodes only 

need exposure to one adopter peer in order to adopt themselves. The authors of this measure 

offer both a local and global measure of reach. Here we focus on comparisons to the local 

measure of reach, which is defined at the node-level (the level most relevant for the comparison 

of seeds). The local reaching centrality, CR(i), of node i is the proportion of all nodes in the graph 

that can be reached from node i via outgoing edges. That is, CR(i) is the number of nodes with a 

finite positive directed distance from node i divided by N – 1 (the maximum possible number of 

nodes reachable from a given node).  

Optimal percolation centrality identifies which nodes are most likely to collapse the 

largest connected component of a graph – defined in terms of simple paths – when these nodes 

are removed (9). In practice, percolation centrality amounts to the product of the reduced degree 

of a node (k – 1) and the total reduced degree of all nodes at the optimal distance d. Optimal 

results are frequently reached when d is either 3 or 4. Optimal percolation centrality was 

calculated in this paper using the collective influence (CI) algorithm defined by Morone & 



 18 

Makse (2015; ref. 9). The specifically implementation of the CI algorithm used in this paper is 

the implementation built into the influential package for the statistical programming language R.2  

 The coreness of an algorithm is calculated using the k-shell decomposition algorithm 

(10). A k-core of a graph G is a maximal connected subgraph of G in which all vertices have 

degree at least k. Equivalently, it is one of the connected components of the subgraph of G 

formed by repeatedly deleting all vertices of degree less than k. A vertex has coreness c if it 

belongs to a c-core but not to any (c+1)-core.  

 

Supplementary Notes 

  

1. Robustness of the measure of locally sufficient bridges 

For the sake of analytic clarity, our main text presents our measure of locally sufficient bridges 

on graphs subjected to simplifying assumptions along three key dimensions: (i) degree 

uniformity, where every node was given the same number of contacts in their neighborhood, and 

(ii) threshold type, where every node was assigned a fixed absolute adoption threshold referring 

to the number of adopters to which one needs to be exposed to adopt. Here we relax these 

assumptions and show that this measure still provides a highly robust predictor of global 

cascades.  

 

 
2 https://cran.r-project.org/web/packages/influential/vignettes/Vignettes.html  

https://cran.r-project.org/web/packages/influential/vignettes/Vignettes.html
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Supplementary Figure 7. Using bridge width to estimate the frequency of 

global cascades in scale-free networks. Displayed is the relationship between the 

adoption threshold (Ti) for a contagion (x-axis) and the frequency of seeding events 

that led to a global cascade, in scale-free networks (𝛾 = 3, m = 4; p = .5; ⟨k⟩ = 8; N 

= 1000), where diffusion is driven by (A) homogeneous absolute thresholds and 

(B) homogeneous fractional thresholds. The data are averaged across 50 

independent simulations for each threshold value. 

 

2. Robustness of the measure of locally sufficient bridges to scale-free networks with 

homogeneous absolute and fractional thresholds  

Here we validate our measure of locally sufficient bridges on scale-free networks to illustrate 

robustness to degree heterogeneity. We simulated outcomes on 50 randomly generated scale-free 

networks, produced using Holme and Kim’s (12) method of tunable clustering (𝛾 = 3, m = 4; p = 

.5; N = 1000). Supplementary Figure 7 illustrates that, even in scale-free networks, our measure 

of locally sufficient bridges provides a strong fit for the frequency of cascades that arise from 

simulating diffusion by activating every seed neighborhood in a network – both for 

homogeneous distributions of absolute thresholds (Supplementary Figure 7A) and homogeneous 

distributions of fractional thresholds. 
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Supplementary Figure 8. The fit between the average bridge width of a graph 

and the frequency of global cascades in scale-free graphs. The circles indicate 

this relationship in scale-free networks with homogeneous absolute thresholds (N 

= 1000; 𝛾 = 3; m = 4; p = .5; Ti = 2, Ti = 3, Ti = 4, Ti = 5, Ti = 6), and the crosses 

indicate this relationship in scale-free networks with heterogeneous absolute 

thresholds (N = 1000; 𝛾 = 3; m = 4; p = .5; Ti = [2, 6]). Data are averaged over 50 

realizations and replicated over all possible seed neighborhoods. The final number 

of adopters for each network was standardized using min-max normalization for 

each threshold condition prior to averaging to facilitate comparisons between 

threshold regimes and different values of p. Hetero., heterogeneous; Homog., 

homogeneous; Abs., absolute.  

 

Consistent with this finding, Supplementary Figure 8 shows that the average bridge width of a 

graph correlates strongly with the average proportion of adopters across all possible seed 

neighborhoods, both in the case of (i) heterogeneously and (ii) homogeneously distributed 

absolute thresholds.  The average bridge width of a graph is highly effective at predicting 

diffusion outcomes for scale-free graphs with (i) homogenously distributed absolute thresholds 

(Ti = 2, Ti = 3, Ti = 4, Ti = 5, Ts = 6; p < .001, rs = .85), and (ii) heterogeneously distributed 

absolute thresholds (Ti = [2, 6]; p < .001, rs = .96).  
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Supplementary Figure 9. The fit between the average bridge width of a graph 

and the frequency of global cascades in k-regular graphs. The diamonds 

indicate this relationship in k-regular graphs with homogeneous fractional 

thresholds (N = 1000; p = [0,1]; ⟨k⟩ = 8; Ti = .1, Ti = .2, Ti = .3, Ti = .4, Ti = .5), and 

the crossed diamonds indicate this relationship in k-regular graphs with 

heterogeneous fractional thresholds (N = 1000; p = [0, 1]; ⟨k⟩ = 8; Ti = [.1, .5]). 

Data are averaged over 50 realizations for each value of p across a range of values 

(p = 0, p = 2-10, p = 2-9, p = 2-8, p = 2-7, p = 2-6, p = 2-5, p = 2-4, p = 2-3, p = 2-2, p = 

2-1, p = 20), where p indicates the probability of each tie in the network being 

randomly rewired. The final number of adopters for each network was standardized 

using min-max normalization for each threshold condition prior to averaging to 

facilitate comparisons between threshold regimes and different values of p. Slight 

horizontal jittering is used to reveal overlapping points (δ = 0.01). The data display 

the results of seeding with all possible seed nodes within each simulated graph. 

Hetero., heterogeneous; Homog., homogeneous; Abs., absolute. 

 

3. Robustness of correlation for k-regular graphs between average bridge width size and 

average proportion of adopters 

Supplementary Figure 9 shows that the correlation between the average bridge width of a 

graph and the average proportion of adopters across all possible seeds holds strongly in k-

regular graphs (⟨k⟩ = 8), both with (i) homogeneously (Ti = .1, Ti = .2, Ti = .3, Ti = .4, Ti = 
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.5; P < .001, rs = .89) and (ii) heterogeneously distributed thresholds (Ti = [.1, .5]; P < .001, 

rs = .98). 

 

 

 

Supplementary Figure 10. Diffusion results for seeding strategies based on 

node centrality for 74 Add Health networks, differentiated across a range of 

homogeneously distributed absolute thresholds. The examined range of 

homogeneously distributed absolute thresholds is displayed along the horizontal 

axis (Ti = 2, Ti = 3, Ti = 4, Ti = 5, and Ti = 6). To average the diffusion outcomes on 

the same graph across different homogeneous threshold conditions, the final 

number of adopters for each network was standardized using min-max 

normalization for each threshold condition prior to averaging. This normalization 

strategy displays the average ranking of each seeding strategy on each network, 

averaged within each threshold regime. Error bars display 95% confidence 

intervals. 

 

 

4. Robustness of Add Health Analysis to Disaggregation by Threshold Regime 

Figure 3 in the main text compares centrality-based seeding strategies while associating each 

seeding strategy with its average diffusion outcome across a range of homogeneous threshold 

distributions (Ti = 2, Ti = 3, Ti = 4, Ti = 5, and Ti = 6). Here, we confirm that our results are 
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robust to comparing seeding strategies in a disaggregated fashion – i.e., by comparing seeding 

strategies within each homogeneous threshold regime separately. Supplementary Figure 10 

shows that seeding with complex centrality produces the highest expected proportion of adopters 

compared to all other centrality measures, under each homogeneous threshold regime examined. 

 

 

Supplementary Table 1. OLS model predicting the proportion of adopters when 

simulating diffusion using the Add Health data set, while controlling for homogeneous 

adoption threshold regime and centrality-based seeding strategy, and while clustering 

standard errors at the network level. Eigenvector centrality is the reference factor in this 

table for the variable corresponding to seeding strategy. Note: the outcome variable here 

represents the un-normalized proportion of adopters. 

 

Note, these results are highly robust to comparing seeding strategies using non-normalized 

diffusion outcomes. Supplementary Table 1 presents the results of an OLS model that predicts the 

raw proportion of adopters (un-normalized) as a function of seeding strategy, while controlling for 

adoption threshold and clustering standard errors at the network level. Supplementary Table 1 
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confirms that seeding with complex centrality is associated with a significant increase in the 

expected un-normalized proportion of adopters as compared to all other centrality-based measures 

examined, while holding adoption threshold constant, and while clustering standard errors at the 

network level (p<0.01, βcomplex = 0.10  ̧ CI = [0.05,0.15]). For an indication of effect sizes, 

Supplementary Table 1 shows that – holding threshold constant – seeding with complex centrality 

is expected to increase the proportion of adopters by 14 percentage points as compared to degree 

centrality (p<0.01), by 22 percentage points as compared to betweenness centrality (p<0.01), by 

15 percentage points as compared to k-core centrality (p<0.01), by 18 percentage points compared 

to percolation centrality (p<0.01), and by 10 percentage points compared to eigenvector centrality 

(p<0.01). Furthermore, replicating the same model presented in Supplementary Table 1 while 

including an additional predictor variable, βcomplex.cent, corresponding to the complex centrality 

associated with each focal seed node identified by each seeding strategy, finds that the complex 

centrality of a focal seed node is strongly and positively correlated with inducing a higher 

proportion of adopters, while controlling for seeding strategy and adoption threshold, and while 

clustering standard errors at the network level (p<0.01, βcomplex.cent. = 0.50  ̧CI = [0.47,0.53]). 

 

5. Robustness of complex centrality seeding to network composition and influence model.   

Here, we demonstrate the ability for complex centrality to outperform extant measures of 

centrality in identifying influential nodes across a range of popular influence models. In addition 

to the complex contagion model, we compare extant seeding strategies in the Independent 

Cascade (IC) model and the Linear Threshold (LT) model (11). The complex contagion model 

assumes that all agents require some degree of reinforcement from multiple peers. The IC and 

LT models, by contrast, provide environments where simple and complex contagion dynamics 
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can coexist: depending on the model’s parameters, some agents may require reinforcement from 

multiple peers to adopt, whereas other agents in the same population may be able to adopt with 

exposure to only a single peer, exhibiting the logic of simple contagion.  Like the complex 

contagion model, IC and LT start with an initial set of seeds, and diffusion proceeds in discrete 

time steps. In IC, when node i becomes active in step t, it is given only one chance to activate 

each inactive neighbor w, where it succeeds with probability θ. If i succeeds, then w will become 

active in t + 1. After node i attempts to activate w at step t, node i is unable to make any future 

attempts to activate w. In LT, each node i is assigned a threshold Ti uniformly at random from 

the interval [0,1]. Each node in LT is influenced by each neighbor j according to a weight bij, 

where the sum of weights among i's neighbors is less than or equal to 1. Adoption thresholds in 

LT thus represent the weighted fraction of i’s neighbors that must become active to trigger 

adoption by i. That is, for node i at step t, node i will become active if the summed weight of its 

active neighbors is greater than or equal to Ti. In all models, diffusion runs until no more 

activations are possible.   

In each influence model, we initiate diffusion from all possible seed nodes, and we use 

each measure of centrality to identify which of these seed nodes is most successful at triggering 

diffusion. We compare each centrality across a range of seeding budgets corresponding to the 

proportion of nodes on a graph that are initially activated as seeds. For each node in a graph, we 

activate that node and a random subset of its neighbors, where the size of this subset is the size of 

the seeding budget minus one (for the central node). Given the importance of clustered social 

influence for complex contagions, we adopt a clustered seeding strategy, such that if the seeding 

budget exceeds the size of the most central node’s neighborhood, we iteratively activate nodes 

that are directly connected to the neighbors of the most central node until we reach the seeding 
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budget. Finally, we use each centrality measure to identify which seed node among all possible 

seed nodes is the most influential. We then compare each centrality measure in terms of its 

ability to successfully identify influential seed nodes in the spread of complex contagions. We 

examine the robustness of these results to a suite of both theoretical and empirical topologies.  

To further evaluate the efficacy of our centrality measure, we compare our measure 

against a canonical approach in computer science: a greedy algorithm that simulates diffusion 

from every possible seed separately and then selects the optimally influential set of nodes with 

the greatest expected diffusion based on their individual performance (11). We focus our analysis 

on random scale-free networks with tunable clustering. We begin by comparing different seeding 

strategies on a large set of simulated scale-free networks, for each influence model: (Model 1) 

the complex contagion model, using heterogeneous distributions of absolute thresholds, (Model 

2) the complex contagion model, using heterogeneous distributions of fractional thresholds, 

(Model 3) the IC model, and (Model 4) the LT model.  
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Supplementary Figure 11. Comparing seeding strategies across seeding 

budgets and influence models. The proportion of adopters averaged over 50 

unique scale-free networks (N = 1000; 𝛾 = 3; m = 4; p = .5) for seeding strategies 

based on complex, degree, betweenness, and eigenvector centrality, as well as a 

greedy sampling algorithm. The first two panels show the success of each seeding 

strategy for the complex contagion model (A) using heterogeneous absolute 

thresholds (Ti = [2, 6]) and (B) using heterogeneous fractional thresholds (Ti = 

[.1,.5]). Second two panels show success of each seeding strategy for (C) the 

Independent Cascade model (θ = 0.1), and (D) the Linear Threshold model. Error 

bars display 95% confidence intervals.  
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Supplementary Figure 11 shows that, in scale-free graphs, selecting seeds with complex 

centrality leads to strikingly higher levels of diffusion than seeding with standard centrality 

measures, across a range of threshold conditions, seeding budgets, and influence models. Panel 

A of Supplementary Figure 11 shows that across seeding budgets from 0.01% to 1%, seeding 

with complex centrality substantially increases the number of adopters when thresholds are 

absolute and distributed heterogeneously, as compared to seeding with degree centrality (n = 60, 

p < .001, CI=[0.024, 0.184]), betweenness centrality (n = 60, p < .001, CI=[0.02, 0.18]), and 

eigenvector centrality (n = 60, p < .001, CI=[0.017, 0.17]) (Wilcoxon Signed Rank Test, Two-

tailed). Further, complex centrality far outperforms the greedy sampling algorithm (n = 60, p < 

.001, CI=[0.14, 0.49], Wilcoxon Signed Rank Test, Two-tailed). The greedy sampling algorithm 

frequently fails to identify seeds that are sufficiently clustered to enable diffusion in the complex 

contagion model with absolute thresholds.  

Panel B of Supplementary Figure 11 shows that these findings replicate in the complex 

contagion model with heterogeneous fractional thresholds. We find that seeding with complex 

centrality leads to 100% global adoption with only 1.2% of the network as seeds, whereas the 

same seeding budget leads to an adoption rate of only 25% on average for degree, betweenness, 

and eigenvector centrality. It takes over three times as many seeds to generate global adoption 

using degree (n = 60, p < .001, CI=[0.40, 0.59]), betweenness (n = 60, p < .001, CI=[0.39, 0.58]), 

and eigenvector centrality (n = 60, p < .001, CI=[0.38, 0.47]), as compared to complex centrality 

(Wilcoxon Signed Rank Test, Two-tailed). In this model, we find that complex centrality 

performs as well as the optimal greedy algorithm (n = 60, p = .72, KS test, Two-tailed). 

We find that these results are not limited to the complex contagion model. Complex 

centrality also outperforms extant seeding strategies in the IC and the LT model. Consistent with 
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prior work, panel C of Supplementary Figure 11 shows that the greedy algorithm outperforms 

degree, betweenness, and eigenvector centrality in the IC model (11). However, panel C of 

Supplementary Figure 11 also shows that in IC, complex centrality outperforms all centrality-

based seeding methods and the greedy algorithm. In supplementary analyses, we show that this 

finding is robust to variation in θ (which specifies the likelihood of successful peer influence in 

IC). Lastly, panel D of Supplementary Figure 11 shows that in the LT model, complex centrality 

also significantly outperforms degree, betweenness, and eigenvector centrality seeding methods, 

equivalent to the optimal greedy algorithm. 

 

6. Robustness of complex centrality seeding to scale-free networks with varying levels of 

clustering.  

To test the robustness of our results to a wide range of scale-free networks that vary in terms of 

average clustering coefficient, we generated scale-free networks using Holme and Kim’s (10) 

method of tunable clustering. The parameter p in this approach determines the probability of 

adding a triangle after adding a random edge to the network (see “Statistical analysis”). The 

results of our seeding analysis on scale-free networks in the main text (Fig. 2) used the following 

parameter settings (𝛾 = 3, m = 4; p = .5; N = 1000) to produce networks with an average 

clustering coefficient (C) of .27. Here we demonstrate the robustness of our results to scale-free 

networks generated with significantly lower and significantly higher levels of clustering. 
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Supplementary Figure 12. Comparing seeding strategies across seeding 

budgets, while varying the level of clustering in scale-free networks. The 

proportion of adopters averaged over 100 unique scale-free networks for seeding 

strategies based on node centrality (complex, degree, betweenness, and 

eigenvector) and a greedy sampling algorithm, under different levels of clustering 

and seeding budgets (i.e., the proportion of nodes in the network that are initially 

activated as seeds). All panels present diffusion results with heterogeneous absolute 

thresholds (Ti = [2, 6]). (A) Scale-free parameters: p = .1, 𝛾 = 3, m = 4, p = .1, N = 

1000, clustering coefficient = .07; (B) Scale-free parameters: p = .8, 𝛾 = 3, m = 4, 

N = 1000, C = .38. Error bars display 95% confidence intervals. Hetero., 

heterogeneously distributed; Hetero. Abs. Thresh., heterogeneous distribution of 

absolute adoption thresholds.  

 

 

 Supplementary Figure 12 shows that the same results reported for Fig. 2 equally hold for 

scale-free networks with low and high levels of clustering. Panel A of Supplementary Figure 12 

shows that when scale-free networks are generated with low levels of clustering (p = .1, 𝛾 = 3, m 

= 4, p = .1, N = 1000, C = .07), complex centrality produces significantly greater levels of 

diffusion across a range of seeding budgets, compared to seeding with betweenness centrality (p 

< .001), degree centrality (p < .001), eigenvector centrality (p < .001), and a greedy sampling 

algorithm (p < .001) (Wilcoxon Signed Rank Test, Two-tailed). Similarly, panel B of 

Supplementary Figure 12 shows that when scale-free networks are generated with high levels of 
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clustering (p = .8, 𝛾 = 3, m = 4, p = .8, N = 1000, C = .38), complex centrality produces 

significantly greater levels of diffusion across a range of seeding budgets, compared to seeding 

with betweenness centrality (p<0.001), degree centrality (p < .001), eigenvector centrality (p < 

.001), and a greedy sampling algorithm (p < .001) (Wilcoxon Signed Rank Test, Two-tailed). 

 

 

Supplementary Figure 13. Comparing seeding strategies across seeding 

budgets in scale-free networks with homogeneous thresholds, absolute and 

fractional. The proportion of adopters averaged over 50 unique scale-free networks 

(N = 1000; 𝛾 = 3; m = 4; p = .5) for seeding strategies based on complex, degree, 

betweenness, and eigenvector centrality, as well as a greedy sampling strategy. 

Success of seeding strategies are shown in the complex contagion influence model 

(A) when using homogeneous absolute thresholds (Ti = 2, Ti = 3, Ti = 4, Ti = 5, Ti = 

6) and (B) when using homogeneous fractional thresholds (Ti = .1, Ti = .2, Ti = .3, 

Ti = .4, Ti = .5). Error bars display 95% confidence intervals. Thresh., adoption 

thresholds. 

 

 

7. Robustness to homogeneous absolute and fractional thresholds in the scale-free graphs 

In Supplementary Figure 13, we present our results on scale-free graphs with heterogeneous 

threshold distributions, which we foreground in the main text because they capture expected 

heterogeneity in a population. Here in Supplementary Figure 13 we show that our seeding results 

also hold in graphs with homogeneous distributions of absolute and fractional thresholds in 
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scale-free networks (N = 1000; 𝛾 = 3; m = 4; p = .5). Panel A of Supplementary Figure 13 

shows that seeding with complex centrality leads to significantly greater diffusion than extant 

seeding strategies in scale-free graphs with homogeneous absolute thresholds; and panel B of 

Supplementary Figure 13 shows that seeding with complex centrality leads to significantly 

greater diffusion than seeding with extant seeding strategies in scale-free graphs with 

homogeneous fractional thresholds.  

 

 

Supplementary Figure 14. Comparing seeding strategies in the Independent 

Cascade model, while varying θ, the probability that a given peer interaction 

in the network will enable diffusion. The proportion of adopters in the 

Independent Cascade model averaged over 30 unique scale-free networks (𝛾 = 3, 

m = 4, p = .5, N = 1000) for seeding strategies based on node centrality (complex, 

degree, betweenness, and eigenvector) and the greedy algorithm. (A) θ=0.2; (b) 

θ=0.3. Error bars display 95% confidence intervals.  

 

8. Robustness to varying the probability of adoption in the independent cascade model 

Supplementary Figure 14 shows that complex centrality outperforms all other centrality-based 

seeding strategies across a range of θ values in the IC model (where θ refers to the probability 



 33 

that any interaction between an adopter and nonadopter in the network will permit diffusion). In 

the main results, we reported simulations of IC with θ = 0.1, where complex centrality was 

shown to outperform all other centrality measures and the greedy algorithm. Complex centrality 

is the most successful in this environment, because when θ is low, reinforcing ties among peers 

can be essential for enabling a cascade. As θ increases, contagion dynamics become “simpler” in 

that single tie encounters become more likely to trigger adoption without peer reinforcement. 

Panel A of Supplementary Figure 14 shows that when θ = 0.2, complex centrality continues to 

outperform all standard centrality-based measures, as well as the greedy algorithm. Panel B of 

Supplementary Figure 14 shows that when θ = 0.3, contagion dynamics become increasingly 

simple, and we find that complex centrality still outperforms all other standard centrality 

measures, but the greedy algorithm starts outperforming complex centrality. However, 

Supplementary Figure 14 also illustrates that when θ increases, all seeding strategies generate 

high levels of diffusion (reaching between 96 – 100% network saturation) and are thus only 

minimally distinguished in practice. By contrast, when θ is low, the choice of seeding strategy 

can result in qualitatively different levels of diffusion. It is in these more sensitive environments 

that complex centrality is by far the most impactful approach, leading to a 15% (percentage-

point) increase in the proportion of adopters compared to the greedy algorithm, and to a 37% 

(percentage-point) increase in the proportion of adopters compared to standard centrality-

measures (Fig. 2).    
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Supplementary Figure 15. Comparing seeding strategies across seeding 

budgets, including uncommon strategies. The proportion of adopters averaged 

over 100 unique scale-free networks (N = 1000; 𝛾 = 3; m = 4; p = .5) for seeding 

strategies based on complex, degree, betweenness, eigenvector, closeness, and 

reach centrality, as well as a greedy sampling strategy. Success of seeding strategies 

are shown in the complex contagion influence model (A) when using heterogeneous 

absolute thresholds (Ti = [2, 6]) and (B) when using heterogeneous fractional 

thresholds (Ti = [.1,.5]). Error bars display 95% confidence intervals. Thresh., 

adoption thresholds.  

 

 

9. Robustness of complex centrality seeding in comparison to closeness and reach centrality 

For succinctness in the main text, we report the advantages of seeding with complex centrality in 

comparison to the most popular centrality-based seeding strategies based on simple path length – 

i.e., degree, betweenness, and eigenvector centrality. Here we show that complex centrality also 

substantially outperforms established centrality measures that are less frequently used in seeding. 

Supplementary Figure 15 shows that, across a range of seeding budgets, complex centrality 

triggers substantially greater diffusion than closeness centrality (5) and reach centrality (6) in 
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scale-free networks with heterogeneous absolute thresholds, as well as scale-free networks with 

heterogeneous fractional thresholds. 

 

 
 

Supplementary Figure 16. Comparing seeding strategies across seeding 

budgets in k-regular networks with homogeneous and heterogeneous adoption 

thresholds. The proportion of adopters averaged over a continuum of k-regular 

networks (N = 1000, ⟨k⟩ = 8), with over 30 unique networks produced at each level 

of randomization controlled by p (p = 0, p = 2-10, p = 2-9, p = 2-8, p = 2-7, p = 2-6, p 

= 2-5, p = 2-4, p = 2-3, p = 2-2, p = 2-1, p = 20). p indicates the probability of each tie 

in the network being randomly rewired. Diffusion results are compared for different 

seeding strategies based on node centrality (i.e.  complex and betweenness) and a 

greedy sampling algorithm, under different threshold conditions and seeding 

budgets. The final number of adopters for each network was standardized using 

min-max normalization for each threshold condition prior to averaging to facilitate 

comparisons between threshold regimes and different values of p. (A) Success of 

seeding strategies in k-regular graphs with homogenous absolute thresholds (Ti = 

2, Ti = 3, Ti = 4, Ti = 5, Ti = 6); (B) using heterogeneous absolute thresholds (Ti = 

[2, 6]). Error bars display 95% confidence interval. 

 

10. Robustness of complex centrality seeding to k-regular graphs.   

In Supplementary Figure 8, we present our results on scale-free graphs with nonuniform degree 

distributions, which are of relevance to seeding in extant empirical social networks that normally 
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have nonuniform degree distributions. Here we show that our seeding results also hold in graphs 

with a uniform degree distribution (i.e., k-regular graphs), which are regularly employed in 

structured social contexts (14,15).  Supplementary Figure 16 shows that seeding with complex 

centrality leads to significantly greater diffusion than seeding with extant seeding strategies in k-

regular graphs of varying levels of randomness in tie distribution. Panel A of Supplementary 

Figure 16 shows that across a range of seeding budgets, seeding with complex centrality in k-

regular graphs with homogeneous absolute thresholds substantially increases the number of 

adopters, as compared to betweenness centrality (p < .001) and the greedy seeding algorithm 

examined in the main text (p < .001) (Wilcoxon Signed Rank Test, Two-tailed) (Note: there is no 

degree centrality and no meaningful eigenvector centrality in k-regular graphs). The same result 

for k-regular graphs with heterogeneously distributed thresholds is shown in panel B of 

Supplementary Figure 16, where seeding with complex centrality triggers much higher levels of 

adoption than seeding with betweenness (p < .001) and the greedy seeding algorithm (p < .001) 

(Wilcoxon Signed Rank Test, Two-tailed).  

 

 

Supplementary Figure 17. Comparing seeding strategies in conventionally 

generated scale-free networks. The proportion of adopters averaged over 20 

unique conventional scale-free networks (N = 1000) across different values of m 
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(specifying the number of ties to add with each new node in the graph) for seeding 

strategies based on complex, reach, degree, betweenness, and eigenvector 

centrality. Success of seeding strategies are shown in the complex contagion 

influence model using heterogeneous fractional thresholds (Ti = [.1,.5]). Results are 

aggregated across a range of seeding budgets, from 2 to 8 nodes as initial seeds. 

(A) with m=5; (B) with m=10; (C) with m=15.  

 

 

11. Robustness to conventionally-generated scale-free graphs 

Here, we confirm that our theory is consistent with scale-free networks generated by the 

conventional algorithm from the Barabási-Albert model (13). Supplementary Figure 17 

illustrates that nodes with the highest complex centrality consistently led to a significantly higher 

proportion of adopters than extant centrality measures (p<0.001 for each pairwise comparison, 

Wilcoxon Signed-Rank Test) in conventionally generated scale-free networks, across a range of 

m values, where m specifies the number of ties to add to the graph when adding a new node in 

the network generation algorithm. Results are aggregated across a range of seeding budgets, 

from 2 to 8 nodes as initial seeds. 

 

12. Statistical details on the structural position of nodes with high complex centrality 

Figures 3B-G in the main text show that seeds with the highest complex centrality have 

putatively low centrality according to popular measures of node centrality based on simple path 

length. Here, we explicitly detail the statistical comparisons captured by figures 3B-G.   

Figure 3B shows that seeds identified with the highest complex centrality have 

significantly lower betweenness centrality (⟨g(i)⟩ = .01) than nodes with the highest degree 

centrality (⟨g(i)⟩ = .04, n = 148, p < .001, CI=[-0.02,-0.009]), eigenvector centrality (⟨g(i)⟩ = .02, 

n = 148, p < .001, CI=[-0.02, -0.003]), percolation centrality (⟨g(i)⟩ = .03, n = 148, p < .001, 
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CI=[-0.02,-0.01]), and betweenness centrality (⟨g(i)⟩ = .08, n = 148, p < .001, CI=[-0.05,-0.03]) 

(Wilcoxon Signed Rank Test, Two-tailed).  

Figure 3C shows that seeds with the highest complex centrality have significantly lower 

degree (⟨k⟩ = 12) than nodes with the highest degree (⟨k⟩ = 24, n = 148, p < .001, CI=[-13.7,-

10.3]), betweenness (⟨k⟩ = 17, n = 148, p < .001, CI=[-6.4,-2.6]), eigenvector (⟨k⟩ = 23, n = 148, 

p = .05, CI=[-12.3,-7.57]), and percolation centrality (⟨k⟩ = 22, n = 148, p < .001, CI=[-12.3,-

8.6]) (Wilcoxon Signed Rank Test, Two-tailed).  

Figure 3D shows that seeds with the highest complex centrality have significantly lower 

eigenvector centrality (⟨xv⟩ = .1) than nodes with the highest degree (⟨xv⟩ = .2, n = 148, p < .001, 

CI=[-0.17,-0.13) and eigenvector centrality (⟨xv⟩ = .27, n = 148, p < .001, CI=[-0.22,-0.20]) 

(Wilcoxon Signed Rank Test, Two-Tailed). Figure 3E shows that seeds with the highest complex 

centrality have significantly lower percolation centrality (⟨ci⟩ = .41) than nodes with the highest 

degree (⟨ci⟩ = .86, n = 148, p < .001, CI=[-0.53,-0.42]), betweenness (⟨ci⟩ = .67, n = 148, p < 

.001, CI=[-0.37,-0.2]), eigenvector (⟨ci⟩ = .77, n = 148, p < .001, CI=[-0.45,-0.22]), and 

percolation centrality (⟨ci⟩ = 1.0, n = 148, p < .001, CI=[-0.61,-0.55]) (Wilcoxon Signed Rank 

Test, Two-Tailed; percolation centrality is normalized using min-max normalization).  

Note that nodes with the highest complex centrality do not have higher degree, 

betweenness, eigenvector, or percolation centrality than nodes with the highest k-coreness. Yet, 

Figure 3F shows that nodes with the highest complex centrality are nevertheless structurally 

distinct from nodes with the highest k-coreness. Figure 3F shows that seeds with the highest 

complex centrality have the lowest k-core centrality (⟨c⟩ = .29) compared to all other measures, 

including nodes with the highest k-core (⟨c⟩ = 1.0, n = 148, p < .001, CI=[-0.83,-0.61]), degree 
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(⟨c⟩ = .74, n = 148, p < .001, CI=[-0.58,-0.36]), betweenness (⟨c⟩ = .44, n = 148, p < .05, CI=[-

0.19,-0.03]), eigenvector (⟨c⟩ = .90, n = 148, p < .001, CI=[-0.8,-0.51]), and percolation 

centrality (⟨c⟩ = .63, n = 148, p < .05, CI=[-0.4,-0.18]) (Wilcoxon Signed Rank Test, Two-

Tailed).  

Lastly, Fig. 3G illustrates the nodes with the highest complex centrality have significantly 

higher complex centrality than the influencers identified by all other measures (p<0.001 for all 

pairwise comparisons, Wilcoxon Signed Rank Test, Two-Tailed). 

 

 

Supplementary Figure 18. Comparing the diffusion outcomes of seeding with 

optimal percolation centrality, across different values of the hyperparameter 

d. Diffusion outcomes are shown for (A) simulated diffusion outcomes in the Add 

Health data set (averaged for Ti=2, Ti=3, Ti=4, Ti=5, Ti=6), and for (B) empirical 

diffusion outcomes of the BSS microfinance program in the Banerjee et al. (2013) 

dataset (3). Error bars display 95% confidence intervals.  

 

13. Robustness to hyperparameter d in seeding with percolation centrality 

The optimal percolation centrality method – also known as the collective influence algorithm 

(CI) – defined by Morone and Makse (2015) is tuned by a hyperparameter, d, which specifies the 
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distance from the focal node (i.e., the number of steps along simple paths) within which alter 

nodes will be assessed in terms of their reduced degree. Our main results presented in figure 3 

and 4 assign d the standard and default value of 3 steps. For thoroughness, we show here that 

altering d does not lead to any significant improvements in the overall proportion of adopters 

induced by seeds selected by percolation centrality, either in simulated diffusion outcomes on the 

Add Health dataset (panel A of Supplementary Figure 18) or in the empirical diffusion of the 

BSS microfinance program as measured by Banerjee et al. (2013; ref. 3) (panel B of 

Supplementary Figure 18). Diffusion is measured in the BSS program here by examining all 

potential adopters, and by examining only those outcomes observed when seeding from leader 

households that agreed to aid in the diffusion of the program (3).  
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Supplementary Table 2. OLS model using each centrality measure to predict the fraction 

of each seed household’s network neighborhood that adopted the BSS program (using 

‘leader’ households only), while controlling for all socioeconomic variables included in 

Banerjee et al.’s (2013) survey, with additional fixed effects at the village-level. The 

intercept identifies the expectation when randomly selecting leader seed households. The 

results are robust to varying the seeding strategy used as the referent strategy for the intercept.  

 

14. Robustness of BSS diffusion model to statistical controls  

In this final supplementary section, we illustrate that the results presented in figure 4 are robust 

to a myriad of statistical tests and socioeconomic control variables. Supplementary Table 2 
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displays the fit of an OLS model that uses each centrality measure to predict the fraction of each 

seed household’s neighborhood that adopted the BSS program (using ‘leader’ households only), 

while controlling for all socioeconomic variables included in Banerjee et al.’s (2013) survey, 

with additional fixed effects at the village level (3). The intercept identifies the expectation when 

randomly identifying leader households. The results are robust to varying the seeding strategy 

used as the referent strategy for the intercept. We see that, even when subject to all of the above 

controls, only seeding with complex centrality is associated with a significant increase in the 

fraction of adopters relative to randomly selected leader households (p=0.001, βcomplex = 

0.07¸CI=[0.03, 0.11]). This effect still holds when clustering standard errors at the village level 

(p<0.05, βcomplex = 0.07). Overall, the above model accounts for 76% of the variance in the ability 

for leader households to trigger adoption of the BSS program among their network neighbors.  
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Supplementary Table 3. OLS model using each centrality measure to predict the fraction 

of each seed household’s network neighborhood that adopted the BSS program (using all 

households as possible seeds), while controlling for all socioeconomic variables included 

in Banerjee et al.’s (2013) survey, with additional fixed effects at the village-level. The 

results are robust to varying the seeding strategy used as the referent strategy for the intercept. 

 

Supplementary Table 3 replicates the model in Supplementary Table 2, while examining the 

capacity for each centrality measure to predict the fraction of seed household’s neighborhood 

that adopted the BSS program, when using any potential adopting household as a seed (3). The 

intercept identifies the expectation when randomly identifying seed households. The results are 
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robust to varying the seeding strategy used as the referent strategy for the intercept. We see that, 

even when subject to all of the above controls, seeding with complex centrality is associated with 

a highly significant increase in the fraction of adopters relative to randomly selected households 

(p<0.01, βcomplex = 0.09¸CI=[0.03,0.14]). This effect still holds when clustering standard errors at 

the village level (p<0.05, βcomplex = 0.09). No other seeding strategies were identified as inducing 

a significance increase in the rate of adoption, relative to randomly selected seed households. 

Thus, again, we see that complex centrality significantly improves the capacity to identify 

influential households in the spread of the BSS program, beyond extant and state-of-the-art 

centrality measures. Overall, the above model accounts for 53% of the variance in the ability for 

households to trigger adoption of the BSS program among their network neighbors. 
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