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Experimental Design

Each trial of the study consisted of a network structure, a pre-
specified number of rounds, and a set of participants equal to the
size of the network (V). Participants were randomly assigned to a
trial (i.e., an active network), and then they were randomly as-
signed to a node within that network (Fig. S1). Participants had
no information about who or how many individuals they were
directly connected to or how many people were in the population.
The subject experience was identical in every network condition.
Consequently, any differences in collective behavior across net-
work conditions were due to the structure of the interaction
networks, and not to information the subjects had about the
structure or size of the population in which they were.

Subject Experience

Each round subjects were randomly paired with one of their
network neighbors and shown a picture for which they had to
enter aname (Fig. S24). They were given a 20-s time limit in which
they could enter a name for the pictured face. During the same
time interval, their partner was given the same face and the same
time limit. If either subject did not complete an answer in the
allotted time, the system registered a void answer and that round
was considered a “null” round in which no information was ex-
changed. In terms of the participants’ scores, both participants
were registered as a failed interaction for a given round if one or
both of them produced a void answer. Alternatively, if both
players entered a name for the pictured face within the time limit,
the round concluded with a page that told both subjects the name
their partner entered and indicated whether they successfully
matched or not. Their score for that round was indicated as either
a “match” or a “no match,” respectively, depending on whether
they were successful or not. Accordingly, the players’ scores were
also updated based on whether they succeeded or not (Fig. S2B).
The players then waited to be assigned with a new partner (an-
other one of their network neighbors). Once a player was as-
signed, the player was again presented with same game screen and
the opportunity to name the image, within the 20-s time interval
(Fig. S2C). This procedure was repeated for the allotted number
of rounds until the player had completed the prespecified number
of rounds.

Each player was permitted to move at their own pace through
the game. Some players may therefore have completed their
allotted number of rounds before some of their network neigh-
bors. To ensure that none of these neighbors was “stranded,” with
all of their neighbors finishing before they could complete the
prespecified number of rounds, some players were given the op-
portunity to play additional rounds of the game until the slower
player had completed his or her full allotment of rounds. These
additional rounds were identical to the earlier rounds and en-
sured that by the end of the game every subject had played at least
the prespecified number of rounds. When all subjects had com-
pleted the prespecified number of rounds, the game ended.

Subject Recruitment

Participants in our study were recruited at large from the World
Wide Web to be players in the “Name Game.” When they arrived
to the study, each participant completed the registration by
choosing a username and an avatar. Participants were then pro-
vided with a specific time to return to the site when they would
play the live Name Game with a group of anonymous, randomly
selected subjects. The study was run for a 140-d period, over
which time recruitment campaigns were conducted to attract

Centola and Baronchelli www.pnas.org/cgi/content/short/1418838112

subjects to participate in the study. In total, 510 subjects were
recruited to participate in the study. Of them, 120 participated in
spatially embedded lattice networks, 96 participated in randomly
connected graphs, and 264 participated in homogeneously mixing
networks, as detailed in Data Analysis and Replication. Subjects
were recruited through email advertisements sent to a broad list
of websites that subscribe to the Adweek mailing list.

Network Structures

Each trial of the study consisted of a network structure and
a population that filled it. We explored three different topologies
within our design: (i) a spatially embedded network, which was
structured as a one-dimensional lattice with degree 4 (each node
was tied to nearest neighbors and next-nearest neighbors); (i)
a random network topology, which was structured as a random
graph with constant degree 4; and (iii) a homogeneously mixing
population, or a complete graph. Each of these topologies was
tested for populations of size n = 24 and n = 48. For n = 96, we
conducted a single study with the homogeneously mixing net-
work (Replication). As discussed in Model, our formal predictions
for n = 96 were qualitatively the same as those found for n = 48
and n = 24.

Data Analysis

The experimental data were produced as a chronological se-
quence of rounds, ordered according to the starting time of the
game (Fig. S3). Each round consisted of two participants each
typing a name. As described above, users had 20 seconds to type
a name, after which time the system registered their answer as
void. A round was considered successful only when the two
participants entered the same name, irrespective of case. In the
analysis, the population’s evolutionary time scale is measured in
terms of the number of times the entire population goes through
a single round of the game, which we refer to as a single “Round
Played.” A Round Played for the population corresponds to N/2
individual rounds in the data sequence. Thus, a Round Played is
equivalent to N/2 pairs (i.e., the entire population) all playing
once. This approach allows us to measure the movement of the
entire population through sequential rounds of the Name Game,
based on the standard mapping between Monte Carlo steps
and microscopic interactions (1). The value of each measured
quantity for the population at any Round Played is obtained by
averaging over the last N/2 individual rounds. Thus, for example,
the average success rate of the population at the (x + 1)th Round
Played corresponds to the average of the individual outcomes in
the interval between the lines (xN/2 + 1) and (x + /)N/2 in the
data sequence (success being a binary variable is assigned values
0 or 1 at each individual round) (Fig. S3). Analogously, the
frequency of each norm at the (x + 1)th Round Played is relative
to the frequency of the other norms in the same interval. If either
member of a given pair fails to type a name within an interaction,
then this interaction is treated as void. This is handled differently
for the analysis of success versus the analysis of norm ecology.
For success rates, a void entry from either member of a pair
indicates nonparticipation (i.e., a null interaction) in that round.
Thus, in the evaluation of the temporal evolution of the success
rate, we disregarded all those interactions in which void entries
appear. For analyzing the evolving norm ecology, however, if
only one member of a pair produced a void field whereas the other
member typed a name, we include the name that was typed by the
active participant as a data point in our analysis of the active
names within the population. As a consequence, for a single
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experimental realization, the considered temporal sequence can
be slightly different for the series of pairwise success and that of
the overall norm ecology. It is worth stressing that all results are
robust against variations of the specific procedure adopted to
take into account the void field and that different ways of dealing
with interactions in which one of the participants did not type
any guess produce results that are equivalent, and virtually un-
distinguishable, under any respect.

Replication

The results presented in the main text were consistent across all
replications of our experiments. We replicated the experiment
eight times for homogeneous mixing populations (n = 12, 24, 48,
and 96), six times for the spatial networks (n = 12, 24, and 48),
and three times for the random networks (n = 24 and 48). All
trials of size n = 24 were run for an average of 25 rounds; trials
of n = 48 were run for an average of 30 rounds, and the trial of
n = 96 was run for 40 rounds.

The choice of the above-mentioned trials was dictated by our
research questions.

As predicted by the model, small # trials (n = 12) produced
similar dynamics across all experimental conditions, preventing
any identification of the effects of network structure on conven-
tion formation. Six trials were conducted with n = 24. According
to our model, this was the minimal population size at which sig-
nificant differences in the emergent dynamics of local coarsening
versus symmetry breaking could be detected. For robustness, each
trial was replicated twice in each condition. This allowed identi-
fication of the main dynamical differences across conditions and
assessment of the validity of the model predictions, as shown in
Fig. 1. The replications with n =48 corroborated these results in
larger networks and allowed us to obtain data sufficient to con-
struct the distributional analyses presented in Fig. 3.

Because consensus becomes more difficult with increasing
scale, the failures in the spatial lattices and random networks
indicated that larger n studies with those topologies would yield
similar results. Our focus for additional replications was thus the
homogeneously mixing population—that is, the only condition in
which a global consensus emerges in our experiments. We rep-
licated the n = 48 homogenously mixing experiment a second
time, and additionally we tested our results in a final, consider-
ably more demanding trial with 96 participants. As a final test of
our findings, we also conducted two “Name List” trials, which
served as a further check on the robustness of the results
(Robustness).

Robustness

A possible concern with the design of our study is that the dis-
tribution of words entered by subjects would be skewed in favor of
a particularly salient name (where saliency could have been due to
a vast range of external events/factors, such as the celebrities in
the news and so forth), which would drive convergence by arti-
ficially reducing the number of options in the population. To
check the robustness of our results in a setting that eliminated
these concerns, we replicated our study in homogeneous mixing
and spatial networks of size n = 24, in an environment in which
participants could not type their own name entries. Instead of
allowing participants to enter their proposed name in a text box,
we provided them a fixed list of 10 names. Participants had to
name a feminine face and could select in each round one name
from the fixed list of Sophia, Emma, Isabella, Olivia, Ava, Emily,
Abigail, Mia, Madison, and Elizabeth—corresponding to the
most popular baby names for females for 2012 in the United
States according to the US Social Security Office (2). The order
of these names was randomized at the beginning of the experi-
ment for each participant, to rule out possible ordering biases.
Fig. 4 shows that the results are consistent with those obtained in
the trials using open field name entry.
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As a secondary check on our results, we examined the data to
determine whether the list of actual names that were suggested
by subjects in any of the trials was artificially limited to a small
number of options. As shown in Fig. S4, in each of the conditions
with open name fields, the number of names entered by subjects
was greater than the size of the population in the game.

Post-trial User Tests

To ensure that the informational controls in our study were ef-
fective, we provided subjects from five selected trials with a
poststudy questionnaire, asking them to report (i) the number of
people in their game and (ii) the number of people with whom
they directly interacted. Fig. S54 shows the mean and SD of
responses to the number of people in the game (normalized by
the number of rounds that subjects played). There were no sig-
nificant differences in the average responses across network
structures and network sizes (P > 0.2, Mann—Whitney U test).
Similarly, Fig. S5B shows the normalized mean and SD of re-
sponses for the number of people with whom players believed
they interacted. There were no significant differences in the
average responses across network structures and network sizes
(P > 0.2, Mann—Whitney U test).

Limitations of the Study

As with all experiments, the scientific controls that made this
study possible also present limitations. Most notably, practical
constraints on the number of people that can be recruited to
simultaneously participate in an evolving social convention within
an experimental environment prevented us from running larger
experiments (i.e., n > 100). These constraints also limited the
duration of our experiments—that is, the number of rounds of
play—as our design relied on subjects’ sustained behavioral en-
gagement over the entire study. Although these practical con-
straints limited the size of our empirical study, the correspondence
between our model and the experimental data provides guidance
for our expectations about how these evolutionary systems behave
at larger sizes and longer time scales. As discussed in Model, the
results from our simulations suggest convergence time in each of
the three network scales as a direct function of the topology. For
spatial lattices, convergence is expected to scale as O(N?) Rounds
Played, whereas for both the random graph and the homoge-
neously mixing population, convergence time is expected to scale
as O(N”’) Rounds Played. Based on the agreement between our
experimental results and the model, we speculate that the dy-
namics of norm evolution within each network topology will follow
the patterns of coarsening (in the spatial lattice and early stages of
the random graph) and symmetry breaking (in the homogeneously
mixing population and late stages of the random graph), as de-
scribed below.

Model

The Naming Game model constructs a population of n agents that
engage in pairwise interactions to negotiate local coordination
and is able to demonstrate the emergence of a global convention
among them (3). An example of such a game is that of a pop-
ulation that has to reach consensus on the name for an object,
using only local interactions, as in the Name Game experiment.
In the model, each agent has an internal name inventory in
which an a priori unlimited number of words can be stored. As an
initial condition, all inventories are empty. At each time step, a
pair of agents is chosen randomly, one playing as “speaker” and
the other as “hearer,” and interact according to the following rules:

e The speaker randomly selects one of her words (or invents
a new word if his or her inventory is empty) and conveys it to
the hearer;
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o if the hearer’s inventory contains such a word, the two agents
update their inventories so as to keep only the word involved
in the interaction (success); and

e otherwise, the hearer adds the word to those already stored in
her inventory (failure).

The nonequilibrium dynamics of the Naming Game are char-
acterized by three temporal regions: (i) initially the words are
invented; (i7) then they spread throughout the system, inducing a
reorganization process of the inventories; and (iii) this process
eventually triggers the final convergence toward the global con-
sensus (all agents possess the same unique word). The dynamics
leading to final consensus and the associated scaling of the con-
sensus time with the population size depend crucially on the to-
pological properties of the social network identifying the set of
possible interactions among individuals.

Homogeneous Mixing Populations. In homogeneously mixing pop-
ulations, the third step above is triggered by a symmetry breaking
in the ecology of conventions, in which the most popular norm will
progressively eliminate all of the competitors. For a population of
size N, consensus is reached in a time tm,w~0(N1'5 ) microscopic
interactions—that is, in O(N*’) Rounds Played—according to
our definition (3).

The symmetry-breaking process has been clarified analytically
by considering a system prepared in an initial configuration in
which half of the population knows only convention “A” and the
other half only convention “B” (3, 4). Here, stochastic fluctua-
tions break the initial symmetry between the two norms, making
one of them more popular, and the interaction dynamics amplify
this small advantage until a final state in which the initially dis-
advantaged convention is extinct. Thus, in the limit of large pop-
ulation, any initial imbalance in favor of one of the two conventions
will eventually determine the success of that convention (4, 5).

The situation is more complex when more than two conventions
are present in the system, but the overall symmetry-breaking
picture remains the same (3, 5). This mechanism is radically dif-
ferent from what is observed in pure imitation models, such as the
Moran process or the voter model, where fluctuations dominate
the whole of the process, leading to consensus, and the advantage
of one of the competing states can be reversed easily during the
dynamics of the process (6). When only pure imitation is at work,
the fluctuation- driven consensus is reached in O(N) Rounds
Played (or Monte Carlo steps).

Networked Populations. In the model described above, at each time
step two agents are randomly selected. The assumption behind
this homogeneous mixing, or “mean-field,” rule is that the pop-
ulation is not structured and that any agent can in principle in-
teract with any other. However, when actors are embedded in
a fixed network, the topology in which the population is embedded
identifies the set of possible interactions among the individuals.
Thus, the group of communicating individuals can be described as
a network in which each node represents an agent and the links
connecting different nodes determine the allowed communication
channels. The (statistical) properties of the underlying network
significantly affect the overall dynamics of the model.

Lattices. On low-dimensional lattices, each agent can rapidly in-
teract two or more times with its neighbors, favoring the estab-
lishment of a local consensus with a high success rate—that is, of
small sets of neighboring agents sharing a common unique word.
As the process evolves, these “clusters” of neighboring agents
with a common unique word undergo a coarsening phenomenon
with competition among them driven by the fluctuations of the
interfaces. The coarsening picture can be extended to higher
dimensions, and the scaling of the convergence time has been
shown to be O(N*“), where d < 4 is the dimensionality of the
space (7). This prediction has been confirmed numerically.
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Small-world networks. Results concerning the homogeneously
mixed population, on the one hand, and regular lattices, on the
other, act as fundamental references to understand the role of
the different properties of complex networks. In between these
regimes, the small-world network (8) allows us to interpolate
progressively from regular structures to random graphs by tuning
the p parameter describing the probability that a link of the reg-
ular structure is rewired to a random destination. The main result
is that the presence of shortcuts, linking agents otherwise far from
each other, allows recovering the fast convergence typical of the
mean-field case. The finite connectivity, on the other hand,
guarantees that there will be a good degree of coordination be-
tween neighbors from the start of the dynamics, as in regular
structures.

In these randomized topologies, two different regimes are

observed (9). For times shorter than a cross-over time, #.,,5s = O
(N/pz), one observes the usual coarsening phenomena, as the
clusters are typically one-dimensional—that is, because the typi-
cal cluster size is smaller than 1/p. For times much larger than
tr0s5, the dynamics shift. They become dominated by the existence
of shortcuts and follow the mean-field behavior similar to the one
observed on the complete graph. The convergence time, mea-
sured in microscopic interactions, scales therefore as N2 and not
as N*¥ (as in low-dimensional lattices) (9).
Complex networks. Most of the relevant features exhibited by
complex networks have been explored systematically, mainly by
means of computer simulations. The scaling exponents observed
in both homogeneous [e.g., Erdos-Rényi (10)] and heteroge-
neous [e.g., Barabasi-Albert (11)] networks are similar to the
one observed in the Watts—Strogatz small-world graphs (8) for
both consensus time and memory use. In particular, the scaling
laws observed for the convergence time is a general robust fea-
ture that is not affected by further topological details, such as the
average degree, the clustering, or the particular form of the
degree distribution (12).

Robustness of the Model. The model described above has been
modified in several directions to test its robustness (6, 13-21). For
example, the rule describing how a word is selected from the
inventory has been investigated, and more efficient strategies
have been identified (13). In the same way, the symmetric update
of the inventories has been altered, and the role of the feedback
between the agents has been investigated (16, 21). However, all
permutations of the model exhibit qualitatively similar dynamics,
which rely on two essential elements: (i) memory and (i) the fact
that for a success to take place both agents must have already
heard the successful convention in the past. That is, actors depend
upon multiple exposures to a term to successfully coordinate on it
(22). These two elements seem to be crucial to reproduce the
observed dynamics of coarsening on low-dimensional lattices
and symmetry breaking in random networks and homogeneously
mixing populations.

Model Rules and User Behavior

To test the relationship between the model and the experimental
results in more depth, we investigated how well the individual
behavior of participants in the study matched with the theoretical
model. We then simulated the long-term dynamics of the real user
behaviors and compared it to the expected dynamics from the
theoretical model.

In the theoretical model, agents accrue a list of word options
based on their history of interactions. The only words that they
can enter at a given round are those that currently exist in their
inventory. If they experience a successful match, their inventory is
deleted except for the matching word. The inventory can increase
again through subsequent interactions, however any subsequent
matches again reset the inventory to 1, leaving only the most
recent matching word. We evaluated subjects’ behavior in terms
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of whether the answers they provided at every round were con-
sistent with answers that agents in our theoretical model could
have provided; that is, we evaluated whether the answers that
subjects actually used would have been in their “inventories” if
they had followed the same rules as the model, given their his-
tories of past interactions, failures, and successes.

Remarkably, we found a 95% agreement between the model
and the subjects’ behaviors. In other words, 95% of the time,
subjects’ choices were entirely consistent with the rules of the
theoretical model. When these individual dynamics were sim-
ulated (95% model rules, 5% random entries—either through
novel word choice or through choosing words from a deleted
inventory), the collective dynamics were indistinguishable
from those of the theoretical model. Consistent with the
model, these results suggest that subjects’ behaviors were
governed more by their recent successes than by their history
of past plays.

Model Implications

As shown in the main text, the model captures well the results of
the Name Game experiment, and the microscopic rules provide
a good fit with the empirically measured user behavior. However,
as discussed above, experimental constraints limit the region of
accessible parameters, in particular with respect to the duration
of an experiment and the population size. The model behavior
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allows us to make grounded predictions on the outcome of ex-
periments at larger scales. In particular, we would expect that:

a) The dynamics observed on the random graph would eventu-
ally be different from the one of spatial networks, and the
scaling of the convergence time with the population size will
be similar to the one observed in the homogeneously mixing
population (9).

b) The difference between the initial stages of the spatial graph
and the homogeneously mixing population will be more and
more significant (12).

¢) The symmetry breaking transition, which governs the consen-
sus process in the homogeneously mixing population, will
result in a characteristic S-shaped behavior of the success
rate curve (3).
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Fig. S1. Schematic representation of randomization to conditions. Subjects arriving to the study were first randomly assigned to an experimental condition
(i.e., a social network) and then randomly assigned to a specific node within that network. The nodes directly connected to an individual constituted the set of
potential partners that he or she could interact with during the game.
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Fig. S2. User interface and experience. At the start of the study, (A) subjects are given a picture of a face and an entry field (with no character limit) to provide
a name. Once a subject submits his or her choice (B) he or she is then exposed to the choice of her interaction partner. If the choices match, both subjects are
rewarded; otherwise, there is no reward for that round. The study then advances to the next round (C), where the player is again matched with a partner and
repeats the same procedure. Each round lasts for 20 s maximum, and the players have real-time information on their record of matches and failures over the
past rounds. The “Players” column on the left of the screen is a static representation of other player icons, identical across experimental conditions (and hence
independent from the actual topology and population size).

Round | Player 1| Name 1 | Player 2 | Name 2 | Success Eg;gg Suczla?;elgate
1 A "Sarah" L "Isabella" 0
2 F "Maria" B "Anna" 0
3 G "Isabella" | "Isabella" 1
4 D "Lauren" C "Sarah" 0
5 E "Giulia" A "Anne" 0 1 1/5
6 | F | "Mary" [ 1 H | "Mary" |1

Fig. S3. Schematic representation of the data for a population of size n = 10. Every experiment generates an ordered list of individual rounds, ordered on the
basis of their starting time. If the names typed by the two players are the same, the interaction is a success, and the success variable takes a value of 1;
otherwise, it is a failure and the relative variable is set at 0. Global quantities, such as the Player Success Rate in the figure, are averaged over N/2 individual
rounds, corresponding to one Round Played. In the figure, the Player Success Rate in the first Round Played success is equal to 1/5, as one pair out of five
achieved success. Within each Round Played, each player plays once on average. For instance, in Round Played 1, user A plays twice (rounds 1 and 5) and player
H does not play at all, whereas in Round Played 2, it would be reversed.
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Cumulative Number of Alternatives

PNAS

Created In Trial
Trial 1 (N=24, Spatial Network) 58
Trial 2 (N=24, Spatial Network) 83
Trial 3 (N=24, Random Network) 40
Trial 4 (N=24, Random Network) 30
Trial 5 (N=24, Homophilous Mixing) 50
Trial 6 (N=24, Homophilous Mixing) 48
Mean 50.66
Standard Deviation 17.88
Trial 7 (N=48, Spatial Network) 66
Trial 8 (N=48, Random Network) 51
Trial 9 (N=48, Homophilous Mixing) 64
Trial 10 (N=48, Homophilous Mixing) 52
Mean 58.25
Standard Deviation 7.84
Trial 11 (N=96, Homophilous Mixing) 120
Mean -
Standard Deviation B

Fig. S4. Cumulative names entered over the course of the study. The numbers reported here indicate the number of different words in active circulation in
each population. Identical spellings with different cases were considered to be the same word. The number of alternative names created in each trial was
larger than the population size.
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Fig. S5. Subjects’ informational awareness about experimental conditions. (A) Subjects’ reported beliefs about the number of people they interacted with are
shown for five experimental trials (normalized by the number of rounds that subjects played). Results are shown for a representative (7) Spatial Network
n = 24, (2) Homogeneous Mixing n = 24, (3) Random Network n = 48, (4) Homogeneous Mixing n = 48, and (5) Homogeneous Mixing n = 96. For the same trials,
B shows subjects’ reported beliefs about the population size of their study (normalized by the number of rounds that subjects played). Error bars indicate the
SD in responses.
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Fig. S6. Numerical simulations of evolution to final consensus. (A and D) Spatial network, (B and E) random network, (C and F) homogeneously mixing
population. The top panels (A-C) show the temporal evolution in the first 30 rounds—that is, in the experimentally accessible regions of the dynamics. The
bottom panels (D-F) show the same simulations run until final convergence. For the spatial network, final consensus requires more than 1000 rounds of play.
After ~300 rounds, only two conventions remain in the population, and they swap their rank twice as the dynamics proceeds through local coarsening. In the
random graph, the initial clusters of local coordination are more permeable due to the lack of a spatial structure and therefore permit symmetry breaking on
longer time scales. In the figure, local coarsening shifts to symmetry breaking within ~120 rounds, and the population reaches convergence by 180 rounds. In
the homogeneously mixing population, rapid symmetry breaking leads to convergence on accelerated time scales detectable within the experimental window.
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Fig. S7. Large n simulations of the Player Success Rate (n = 1,000). Average success in the spatial networks (white boxes) grows rapidly in the first 50 rounds
because repeated interactions within neighborhoods facilitate local coordination. However, final consensus time is protracted by local competition among
emergent groups. In random networks (gray boxes), an initial phase of rapid local consensus with slow global consensus shifts toward a sudden jump of the
Player Success Rate. This is a typical signature of the underlying symmetry breaking process eventually occurring in the space of conventions. In homogeneously
mixing populations (black boxes), initial coordination is most difficult during the first 50 rounds. However, this gives way to a sharp symmetry breaking
transition, in which a global convention spontaneously emerges.
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