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Abstract 
 

Self-control is vital for a wide range of outcomes across our lifespan, yet the developmental 
trajectory of its core components during adolescence remains elusive. Many adolescents can successfully 
regulate their behavior even when they do not show strong activation in brain regions typically recruited 
during self-control in adults. Thus, adolescents may rely on other neural and cognitive resources to 
compensate, including daily experiences navigating and managing complex social relationships that likely 
bolster self-control processes. Here, we tested whether activity and connectivity in brain systems 
associated with social cognition (i.e., self-processing and mentalizing) facilitated successful self-control. 
We measured brain activity using fMRI as 62 adolescents completed a Go/No-Go response inhibition 
task. Recruitment of social brain systems, especially the self-processing system, was associated with 
better response inhibition in adolescents. Interestingly, the reliance on the self-processing system was 
stronger in adolescents with weaker activation in the canonical response inhibition system, suggesting a 
compensatory role for social brain systems during adolescent development. Furthermore, we examined 
the importance of social context by computing the size, number of communities, and modularity of our 
participants’ real-life social network. We found that adolescents with more friends and more communities 
in their social networks demonstrated a stronger relationship between response inhibition and recruitment 
of social brain systems. Collectively, our results identify the importance of social context and its 
moderating role on the relationship between brain activity and behavior. Furthermore, our results indicate 
a critical role for social brain systems during the developmental trajectory of self-control throughout 
adolescence.  
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Significance Statement 
 
We employed a network neuroscience approach to investigate the role of social context and social brain 
systems in facilitating self-control in adolescents. We found that recruitment of social brain systems was 
associated with better response inhibition in adolescents, especially for adolescents with weaker 
activation in the response inhibition system. Moreover, adolescents with more friends and communities in 
their social networks showed stronger relationships between response inhibition and recruitment of social 
brain systems. Our results advance understanding of how brain systems facilitate self-control in 
adolescents, and how these brain responses are associated with features of an adolescent’s real-life social 
network. Bringing together findings related to brain networks and social networks provides key insights 
into how biology and environment mutually influence development.  
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Introduction 
 

Adolescence is characterized by rapid cognitive, social, and neurological development 
(Blakemore, 2008; Casey, Jones, & Hare, 2008; Ernst, Pine, & Hardin, 2005). In a notable hallmark of the 
developmental trajectory, the size and structure of the prefrontal cortex changes in concert with an 
increasing segregation of functional brain networks (Fair et al., 2007). Collectively, these cohesive 
processes have been posited as the underlying neural substrates to facilitate improved self-control (Casey 
et al., 2008; Konrad & Eickhoff, 2010; Tamm, Menon, & Reiss, 2002). Response inhibition is a key 
component of self-control, and deficits in response inhibition, and the brain systems supporting response 
inhibition, are thought to contribute to altered psychological and behavioral functioning in adolescents, as 
manifest in ADHD (Konrad & Eickhoff, 2010), substance abuse (Mahmood et al., 2013), and condom use 
(Hansen, Thayer, Feldstein Ewing, Sabbineni, & Bryan, 2018). 

In addition to rapid changes in neurological structure and function, the period of adolescence is 
also characterized by heightened social sensitivity (Braams & Crone, 2017), and peer influence is a 
pervasive factor that influences adolescent behavior (Wasylyshyn et al., 2018). Recent work shows that 
the structure and composition of an adolescent’s social network can influence their self-control (Meldrum, 
Young, & Weerman, 2012). This putative role of the social network surrounding the individual is 
particularly notable in light of the fact that self-control can act as an important buffer to risky peer 
influence (Meldrum, Miller, & Flexon, 2013; Meldrum et al., 2012). In addition, both negative peer 
influence and reduced tendencies to engage in self-control processes contribute to behavioral issues 
arising during adolescence (Konrad & Eickhoff, 2010; Meldrum et al., 2013, 2012). 

Studies of response inhibition in adults consistently demonstrate that a core set of brain regions 
are involved in successfully inhibiting prepotent responses, including the right inferior frontal gyrus 
(IFG), dorsal lateral prefrontal cortex (dlPFC), and basal ganglia (Simmonds, Pekar, & Mostofsky, 2008). 
Adolescents recruit these brain regions to a lesser extent than adults, and they also show more distributed 
patterns of activation in other brain regions including the medial prefrontal cortex (mPFC) and posterior 
cingulate cortex (PCC) (Fair et al., 2007; Marsh et al., 2006; Rubia et al., 2013; Tamm et al., 2002). These 
studies suggest that recruitment of regions involved in response inhibition facilitates rule-based, top-down 
control, whereas recruitment of regions in the default mode (DM), including mPFC, PCC, or temporal 
areas, facilitates bottom-up processing (Konrad & Eickhoff, 2010). Additional evidence suggests that 
these systems may be less efficient in adolescence than in adulthood, reflecting immature or less 
developed inhibitory mechanisms (Konrad & Eickhoff, 2010; Marsh et al., 2006; Rubia et al., 2013; 
Tamm et al., 2002; Vara, Pang, Vidal, Anagnostou, & Taylor, 2014).  

Collectively, these results have been interpreted as supporting the notion that recruitment of areas 
outside of the canonical response inhibition system would lead to deficits in response inhibition (Konrad 
& Eickhoff, 2010; Tamm et al., 2002). However, it is also possible that activation of a more distributed 
set of areas reflects an adaptive, compensatory mechanism necessary to support response inhibition in the 
developing adolescent brain. Adjudicating between these two hypotheses is difficult in part because most 
fMRI studies on response inhibition in adolescents do not report or do not find significant associations 
between brain activity and response inhibition performance (Tamm et al., 2002), although some report 
differential activation in groups of individuals that differ in response inhibition (Liddle et al., 2011).  

A network neuroscience framework that also takes into account social context might help address 
some of these conflicting hypotheses and yield important insights into the neurophysiological drivers of 
successful response inhibition. One possible explanation for the null result that brain activity is not 
associated with response inhibition performance is that most studies ignore contextual factors that might 
moderate the link between brain activity and inhibitory abilities, including social relationships and 
individuals’ position in their social network (Falk & Bassett, 2017; Pegors, Tompson, O’Donnell, & Falk, 
2017; Schmälzle et al., 2017). Recent work suggests that social relationships and an individual’s position 
in their social network shape how the brain processes information (Schmälzle et al., 2017). Furthermore, 
social relationships are increasingly being organized into clusters of segregated communities around 
individuals, such that individuals can now connect with multiple groups that serve different functions 
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(Hampton & Wellman, 2003; Rainie & Wellman, 2012). Two important features of this individual-
focused organization of social networks are that (i) it requires individuals to actively recruit other 
individuals into their network and maintain existing communities within their network, and (ii) it allows 
individuals to keep groups more segregated for distinct functions (e.g., one group provides advice about 
social and romantic relationships, another group provides support for school and career issues; Rainie & 
Wellman, 2012). Thus, one might expect that the degree to which an individual’s social network is 
organized into many (versus few) or segregated (versus overlapping) communities would be associated 
with that individual’s cognitive abilities, including what cognitive or social resources individuals are 
likely to recruit to regulate their behavior. We suggest that adolescents with larger networks segregated 
into more communities may adopt more social resources to successfully regulate their behavior. 

Another possible explanation for the null result that brain activity is not associated with response 
inhibition performance is that the cognitive demands of a response inhibition task may require the 
coordinated action of multiple brain regions and systems (Chai et al., 2017; Shine et al., 2016), making 
connectivity phenotypes critical for predicting response times (Vatansever, Menon, Manktelow, Sahakian, 
& Stamatakis, 2015). Although some evidence suggests that behavioral issues in adolescents may arise 
from weaker activation in control systems compared to adults, as well as more distributed activation 
elsewhere in the brain (Konrad & Eickhoff, 2010), it is also possible that adolescents compensate for 
weaker recruitment of control systems by leveraging social resources or recruiting other cognitive control 
systems. Given adolescents’ sensitivity to social influence (Braams & Crone, 2017; Wasylyshyn et al., 
2018), we suggest that social brain systems might be particularly important for understanding how 
adolescents recruit self-control processes.  

Here, 62 adolescent males completed a Go/No-Go response inhibition task while brain activity 
was measured using fMRI. We also collected information about adolescents’ real-life social networks in 
order to assess the moderating role of social network properties in influencing the link between brain 
activity and response inhibition. We hypothesize that distributed patterns of activation across both 
response inhibition brain regions as well as other socially-relevant brain systems (self-processing and 
mentalizing systems) should be associated with response inhibition performance, and this distributed 
neural activity will be moderated by social network properties. This hypothesis is based on the notion that 
for some individuals, recruiting regions outside the canonical response inhibition network might also be 
important for effective response inhibition. Specifically, an individual’s social network might play an 
important role in influencing the cognitive strategies and networks recruited to successfully complete the 
Go/No-Go task. We anticipate that social brain systems, including brain systems involved in self-
referential processing and mentalizing, should facilitate response inhibition, especially for adolescents 
with weaker recruitment of executive function systems. Additionally, we expect that these effects will be 
moderated by an adolescent’s real-life social network structure, including network size, number of 
communities, and network modularity. 
 

Results 
Behavioral Performance on a Task Requiring Response Inhibition 
 We first examined participants’ behavioral performance on the task requiring response inhibition. 
Participants’ average response time on Go trials was 373 ms (SD=4.36 ms), and their average accuracy on 
No-Go trials was 75.4% (SD=11.0%). Consistent with past work, we observed a speed-accuracy tradeoff 
such that participants who showed greater accuracy on No-Go trials responded more slowly on Go trials 
(r(60)=0.373, p=0.003). For all subsequent analyses, we focused on a metric known as Go/No-Go 
efficiency, which quantifies how well participants balanced the speed-accuracy tradeoff when completing 
the Go/No-Go task. The Go/No-Go efficiency score ranges from 0-1, where values approaching 1 indicate 
that participants are responding quickly but still correctly inhibiting responses on No-Go trials, and values 
approaching zero indicate that a participant was either responding fast but inaccurately, or slow and 
accurately. Participants’ average task efficiency was 0.497 (SD=0.081). 
 
Activation of Brain Systems During a Task Requiring Response Inhibition 
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 We next examined recruitment of the three brain systems of interest (the response-inhibition, self-
processing, and mentalizing systems) during trials that required response inhibition. As shown in panel B 
of Figure 1, mean system activation was significantly greater during correct No-Go trials than during 
correct Go trials in both the response inhibition system (t(60)=3.58, p<0.001) and the mentalizing system 
(t(60)=5.51, p<0.001), but brain activity was not greater on average during response inhibition in the self-
processing system (t(60)=1.25, p=0.216). 
 To test how brain activity related to the tradeoff between speed and accuracy when inhibiting 
prepotent responses in this task, we examined whether mean activation for No-Go trials versus Go trials 
in each of the three systems accounted for variability in the adolescents’ Go/No-Go efficiency score (see 
Methods, Eq. 1). Interestingly, brain activity in the response inhibition system was not correlated with 
individual differences in efficiency (r(60)=0.166, p=0.197; Figure 1 panel C), but greater recruitment of 
the self-processing system was positively associated with efficiency (r(60)=0.323, p=0.010; Figure 1 
panel D). The mentalizing system showed a similar trend as the self-processing system, but its activation 
was also marginally associated with better efficiency (r(60)=0.246, p=0.054; Figure 1 panel E). 
 
Compensatory Activation in Social Brain Systems 

We next examined our hypothesis that adolescents with less tendency to use executive function 
brain systems typically observed in adults may instead recruit regions outside the canonical response 
inhibition network to successfully perform the task. We ran two multiple regression analyses between the 
response inhibition network and each of the two social brain systems, with mean system activation for 
No-Go versus Go trials as the independent variables and the Go/No-Go efficiency score as the dependent 
variable. 

We found a significant interaction between response inhibition activation and self-processing 
activation: adolescents who had weaker activation of the response inhibition system showed a stronger 
relationship between task performance and activation of the self-processing system (β=-0.214, p=0.035; 
Figure 2 panel A). To further explore this interaction effect, we probed the simple slopes: at lower levels 
of response inhibition system activation (-1 SD), the relationship between self-processing system 
activation and efficiency was significant (β=0.487, p=0.001). At higher levels of response inhibition 
system activation (+1 SD), there was no significant relationship between self-processing system 
activation and efficiency (β=0.059, p=0.722).  

We found a similar, albeit marginal, effect with response inhibition system activation and 
mentalizing system activation: adolescents who had weaker activation of the response inhibition system 
showed a stronger relationship between task performance and activation of the mentalizing system (β=-
0.176, p=0.065; Figure 2 panel B). However, after examining simple slopes, we found a compensatory 
relationship at lower levels of response inhibition system activation. The relationship between 
mentalizing system activation and efficiency was significant at lower levels (-1 SD) of response inhibition 
system activation (β=0.412, p=0.022), but not at higher levels (+1 SD) of response inhibition system 
activation (β=0.060, p=0.717). 

Across both regression analyses, activation in self-processing and mentalizing regions facilitated 
a higher Go/No-Go efficiency score only when adolescents had lower activation in response inhibition 
regions, suggesting that these regions might serve a compensatory role for adolescents with less mature 
brain development. 
 
Connectivity Within and Between Brain Systems and Response Inhibition 
 In addition to examining mean system activation, we were also interested in determining whether 
connectivity within and between these three systems was associated with successfully and efficiently 
inhibiting prepotent responses. If self-processing and mentalizing systems are compensating for weaker 
recruitment of response inhibition systems, then it is possible that communication between these regions 
is important for efficient response inhibition. To assess the role of connectivity in this process, we 
examined the average connectivity both within each of the three systems as well as the average 
connectivity between the response inhibition network and each of the social brain systems (self-
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processing and mentalizing). For both within- and between-system comparisons, we computed the 
Pearson correlation coefficient between average connectivity and task performance (see Figure 3). 

We found that adolescents who had a higher Go/No-Go efficiency score had stronger 
connectivity between the response inhibition and self-processing systems (r(60)=0.315, p=0.010; Figure 3 
panel A) and weaker connectivity within the self-processing system (r(60)=-0.355, p=0.005; Figure 3 
panel B). We observed no significant associations between mentalizing system connectivity and task 
performance. 

 
Unique Contribution of Mean Activity and Average Connectivity for Response Inhibition 

Since both the mean system activation and connectivity results demonstrated a compensatory role 
for the social brain systems, we included both measurements of brain activity in the same model to 
understand their relationship to improved performance on the response inhibition task. 

We found a significant interaction between response inhibition activation and the connectivity 
between the response inhibition system and the self-processing system (β=-0.232, p=0.039; Figure 3 
panel C). To further explore this interaction effect, we probed the simple slopes and found that at lower 
levels of response inhibition system activation (-1 SD), the relationship between response inhibition × 
self-processing system connectivity and an adolescent’s Go/No-Go efficiency score was significant 
(β=0.559, p=0.001). At higher levels of response inhibition system activation (+1 SD), there was no 
significant relationship between response inhibition × self-processing system connectivity and the 
efficiency score (β=0.096, p=0.553). 

Interestingly, we observed no such moderating effect for connectivity within the self-processing 
system (β=0.123, p=0.358; Figure 3 panel D). Collectively, these results suggest that activation in the 
self-processing system supports efficient task performance when it involves communication with 
response inhibition brain regions, but not when it involves communication with other self-processing 
brain regions.  
 
Real-life Social Network Properties Correlate with the Recruitment of Brain Systems 

Across our analyses, results demonstrated that activation in the two social brain systems (self-
processing and mentalizing) compensated for weaker recruitment of the canonical response inhibition 
system, and this compensatory activity was associated with higher Go/No-Go efficiency scores, enabling 
enhanced task performance. In short, brain systems implicated in social processes facilitate better 
response inhibition performance. Consequently, our next set of analyses examined whether features of an 
adolescent’s real-life social network correlated with the neural activation when adolescents successfully 
inhibited prepotent responses. 

We computed three features of the adolescents’ social networks: the number of communities, the 
size of communities (number of friends in a community), and the modularity of the network that 
characterize the interrelations among the communities. A network with high modularity contains distinct 
communities of friends where the connections within communities are substantially denser than the 
connections between communities. In contrast, a network with low modularity may also contain distinct 
communities, but with less of a difference in the density of connections within versus between 
communities. An adolescent with high network modularity may have sets of friends from school, another 
from sports, and yet another from church, and the friends in those groups may never interact with one 
another. An adolescent with low network modularity might have friends from these same groups, but 
friends from school might also know friends from sports or church. In our study, adolescents had an 
average of 491 Facebook friends in their social network (SD=280), which were clustered into an average 
of 8.42 communities (SD=4.07) with a mean modularity of 0.235 (SD=0.122). 

For each of these three social network parameters, we investigated whether variability in the 
adolescent’s neural response across the three brain systems during the response inhibition task 
successfully accounted for variability observed in their real-life social network. This set of analyses 
separately explored the relationship of the social network parameters with each of the brain parameters 
identified from the previous results: mean system activation of each system, within-system connectivity 
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of each system, and between-system connectivity of the response inhibition system and each of the two 
social brain systems. 

We found that adolescents with more friends in their social network had greater connectivity 
within the mentalizing system (r(60)=0.259, p=0.042; Figure 4 panel A). A similar, but only marginally 
significant, relationship was observed with mean system activation, where adolescents who had more 
communities in their social network also had greater activation within the mentalizing system 
(r(60)=0.224, p=0.080; Figure 4 panel B). Finally, we observed a negative correlation between within-
system response inhibition connectivity and network modularity; adolescents with weaker connectivity 
within the response inhibition system had more segregated communities in their social network than 
adolescents with stronger connectivity within the response inhibition system (r=-0.351, p=0.005). None 
of the other correlations were significant. 
 
Real-life Social Networks Account for Compensatory Role of Social Brain Systems 

In our final set of analyses, we examined whether any of the three social network properties 
(number, size, and modularity of communities) moderated the observed relationship between brain 
activity or connectivity and adolescents’ Go/No-Go efficiency score. Mirroring our correlational analyses, 
we tested each of these hypotheses in separate models for the mean activity, within-system connectivity, 
and between-system connectivity of the three brain systems of theoretical interest: response inhibition, 
mentalizing, and self-processing systems. 

We found that the relationship between mean activity in the response inhibition system and an 
adolescent’s Go/No-Go efficiency score was moderated by social network properties. Specifically, there 
was a significant interaction between mean activity in the response inhibition system and network 
modularity (β=0.344, p=0.026). Additionally, there were two marginally significant interactions: one 
occurred between activity in the response inhibition system and the number of communities (β=0.299, 
p=0.085; Figure 5 panel A), whereas the other occurred between activity in the response inhibition system 
and the network size (β=0.211, p=0.084). We further probed these interactions using simple slopes 
analysis. We found that adolescents high (+1 SD) in network size, number of communities, and 
modularity had a significant positive relationship between mean activity in the response inhibition system 
and the Go/No-Go efficiency score (β=0.390, p=0.027; β=0.530, p=0.034; β=0.625, p=0.009; 
respectively), whereas the relationship was not significant for adolescents low (-1 SD) in network size, 
number of communities, and modularity (β=-0.033, p=0.853; β=-0.068, p=0.713; β=-0.062, p=0.703; 
respectively). Interestingly, no significant interactions were found between these three social network 
properties and mean activation in either of the two social brain systems.  

In contrast, the connectivity results revealed that an adolescent’s real-life social network 
accounted for the compensatory role that social brain systems served for better task performance. More 
specifically, the association between brain connectivity and task performance was significantly moderated 
by the number of social network communities, but not by social network size or modularity. The number 
of communities significantly moderated the relationship between the Go/No-Go efficiency score and the 
between-system connectivity of the response inhibition and self-processing systems (β=0.367, p=0.005; 
Figure 5 panel B). Compared to adolescents with fewer communities in their social networks (-1 SD; β=-
0.068, p=0.713), adolescents with more communities (+1 SD) showed a stronger positive association 
between their Go/No-Go efficiency score and the between-system connectivity of the response inhibition 
and self-processing systems (β=0.530, p=0.034). 

We also observed a marginally significant moderating effect of number of communities on the 
relationship between the Go/No-Go efficiency score and within-system mentalizing connectivity (β=-
0.250, p=0.058). Adolescents with a large number of communities exhibited a negative relationship 
between task performance and within-system mentalizing connectivity, whereas adolescents with few 
communities showed a positive relationship between their Go/No-Go efficiency score and within-system 
mentalizing connectivity; however, the simple slopes were not significant in either case (β=-0.277, 
p=0.134; β=0.224, p=0.224; respectively). 
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Discussion 
 
 
Self-control processes, including response inhibition, predict many important outcomes in 

adolescence, including school success (Blair & Diamond, 2008), risky behaviors (Behan et al., 2014; 
Hansen et al., 2018; Mahmood et al., 2013), and psychiatric outcomes (Konrad & Eickhoff, 2010; Liddle 
et al., 2011). Social context also influences how adolescents engage self-control processes, such that 
family and peer relationships can facilitate better self-control or buffer against potential negative effects 
of weaker self-control (Farley & Kim-Spoon, 2014; Meldrum et al., 2012). Yet, the neurophysiological 
drivers of successful response inhibition in adolescents remain unclear. We argue that progress in 
understanding has been hampered in part by a focus on activation in single brain regions as well as a lack 
of focus on the social context surrounding the adolescent. 

Here, we adopted a network neuroscience approach (Bassett & Sporns, 2017; Bullmore & Sporns, 
2009) to examine how response inhibition, self-processing, and mentalizing systems contribute to 
effective response inhibition. We also collected adolescents’ real-life social networks to examine whether 
variability in social network structure could account for differences in adolescent’s ability to inhibit 
prepotent responses. We found that brain regions outside the canonical response inhibition system 
compensated for adolescent differences in the response inhibition system, such that adolescents who had 
weaker response inhibition activity still performed well on the Go/No-Go task if they had stronger 
activity in social brain regions and greater connectivity between social brain regions and the response 
inhibition network during the task. Moreover, adolescents with larger social networks with segregated 
communities of friends showed stronger relationships between brain systems and response inhibition. 
Collectively, our results provide insight into how brain systems facilitate cognitive control in adolescents, 
and how these brain responses are associated with features of an adolescent’s real-life social network. 
 
Activation in Social Brain Systems 

This study extends previous work that finds more distributed patterns of brain activity in 
adolescents during response inhibition (Fair et al., 2007; Marsh et al., 2006; Rubia et al., 2013; Tamm et 
al., 2002). We showed that aggregate activity in the canonical response inhibition system as well as 
aggregate activity in the mentalizing system was significantly greater during No-Go trials than during Go 
trials, yet performance on the task, as indexed by the Go/No-Go efficiency score, was significantly 
associated with greater activation in the self-processing system. Although we found no direct relationship 
between activation in the response inhibition system and how efficiently adolescents inhibited their 
responses on No-Go trials, we found that this relationship was moderated by network dynamics in social 
brain systems including self-processing and mentalizing systems. We showed here for the first time that 
adolescents who have weaker response inhibition activation still perform well on the Go/No-Go task if 
they have stronger activation in self-processing and mentalizing systems, and if they have greater 
connectivity between the self-processing and response inhibition system during the task.  

The pattern of results that we uncovered is consistent with past work that has also found that 
adolescents show weaker activation in response inhibition brain regions (e.g., basal ganglia and IFG) and 
stronger activation in social brain regions (e.g., mPFC and PCC; Fair et al., 2007; Marsh et al., 2006; 
Rubia et al., 2013; Tamm et al., 2002). These prior studies have also found weak evidence for a 
relationship between activation in response inhibition brain regions and task performance (Tamm et al., 
2002). The current work suggests that one reason for this lack of a direct effect is that other more 
distributed brain systems might be compensating for weaker recruitment of executive function in the 
adolescent brain. 

Importantly, the version of the Go/No-Go task used in the current study has no explicit social 
components, and so one might wonder how or why social brain systems are recruited during a non-social 
task. Since most brain regions serve multiple functions, one possibility is that the cortical regions 
implicated in social processing are being co-opted for response inhibition to compensate for weaker 
activation in other brain regions. It is also possible that, because adolescents are highly sensitive to social 
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information, they are recruiting additional motivational or cognitive strategies from their daily social 
experiences to facilitate effective task performance (e.g., to perform well in front of the experimenter, feel 
proud of their performance, or implicitly compete against others in the study). Another possibility is that 
self-control processes may first develop specifically for social situations in social brain systems, and then 
self-control becomes more domain-general once the canonical response inhibition system observed in 
adults gradually develops over the course of adolescence. 
 
Connectivity between Response Inhibition and Social Brain Systems 

If self-processing and mentalizing systems are compensating for weaker recruitment of response 
inhibition systems, then it is possible that communication between these regions is important for efficient 
response inhibition. Consistent with this idea, we found that connectivity between the response inhibition 
and self-processing systems was positively associated with response inhibition performance. Importantly, 
connectivity within the self-processing system was negatively associated with response inhibition 
performance, suggesting that greater recruitment of social brain systems is not always beneficial for 
response inhibition. Thus, social brain systems may help compensate for weaker recruitment of response 
inhibition systems, but only when social brain systems are communicating directly with more canonical 
response inhibition brain regions. 

Recent work in network neuroscience also suggests that successful performance on many 
cognitive tasks requires coordinated action across multiple brain regions and brain systems (Chai et al., 
2017; Shine et al., 2016). This role for distributed connectivity extends to regions that are not typically 
considered important for a specific cognitive process, many of which overlap with the regions identified 
in our self-processing and mentalizing meta-analyses. For example, regions in the default mode network 
facilitate faster response times in a motor task (Vatansever et al., 2015) and better working memory 
performance (Čeko et al., 2015), but are not canonically thought of as part of motor or memory circuitry. 
Similarly, we show here that brain systems implicated in social processes facilitate better response 
inhibition performance. Notably, our study is the first to show this relationship in adolescents. 
 
 Social Network Structure and Response Inhibition 

The current work also contributes to a growing body of evidence that social network structure 
influences neural processes (Bickart, Hollenbeck, Barrett, & Dickerson, 2012; Molesworth, Sheu, Cohen, 
Gianaros, & Verstynen, 2015; O’Donnell, Bayer, Cascio, & Falk, 2017; Pegors et al., 2017; Powell, 
Lewis, Roberts, Garcia-Finana, & Dunbar, 2012; Schmälzle et al., 2017). The structure of and activation 
in brain regions implicated in social processing and affective processing are influenced by individuals’ 
social network size (Kanai, Bahrami, Roylance, & Rees, 2012; Lewis, Rezaie, Brown, Roberts, & 
Dunbar, 2011; Powell et al., 2012; Von Der Heide, Vyas, & Olson, 2014). Social network structure also 
influences brain activity in mentalizing regions when thinking about others’ opinions (O’Donnell et al., 
2017) as well as connectivity within the mentalizing system during a social exclusion task (Schmälzle et 
al., 2017).  

Here, we showed for the first time that social network structure also moderated brain systems 
involved in a non-social task. Adolescents with larger social networks comprised of a greater number of 
segregated communities showed a stronger relationship between response inhibition activation and task 
performance. Adolescents with more communities in their social network also had a stronger relationship 
between task performance and the between-system connectivity of the response inhibition and self-
processing systems. Larger social network structures that have more communities or communities that are 
more segregated (higher in modularity) require individuals to actively maintain multiple groups of friends 
(Hampton & Wellman, 2003; Rainie & Wellman, 2012). The ability to actively maintain these groups 
may in turn be facilitated by (or require) more diverse brain systems being recruited for behavioral self-
regulation. 

This pattern of results is consistent with recent work showing that peer relationships and social 
context can strongly influence self-control. Children’s ability and motivation to regulate their behavior is 
influenced by salient group norms (Doebel & Munakata, 2018), and adolescents who are surrounded by 
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peers with better self-reported self-control are also more likely to show improved self-control over the 
course of adolescence (Meldrum et al., 2012). Brain activity during a social exclusion task in the 
laboratory also predicts an adolescent’s susceptibility to peer influence in a driving simulation one week 
later (Wasylyshyn et al., 2018). Here, we showed that an adolescent’s social network structure also 
influences which brain systems serve to help regulate their behavior. It is possible that adolescents’ daily 
experiences navigating and managing complex social relationships with multiple distinct communities 
influence how they use different cognitive strategies or motivational resources to complete cognitive tasks 
such as response inhibition. Alternatively, adolescents who recruit more diverse brain systems may be 
more capable of managing and maintaining larger and more complex social networks. An interesting 
avenue for future work would be to examine the directionality of this relationship between social brain 
network processing and the structure of real-life social networks. 

  
Methodological Considerations and Limitations 
 One potential limitation for the generalizability of the current work concerns the sample. All of 
our participants were 16 year-old males, and thus it is unclear whether these results would extend to 
adolescent females as well. The original study for which these data were collected was primarily 
concerned with neural correlates of adolescent risky driving and was restricted to adolescent males who 
had recently received their driver’s license since this group has the highest statistical risk for accidents on 
modern roadways.  

Since participation was restricted to 16 year-olds, we also cannot address any questions related to 
the developmental trajectory of response inhibition over the course of adolescence. The adolescent brain 
is rapidly developing over time, as is adolescents’ response inhibition performance, and thus, future work 
could investigate whether self-processing and mentalizing systems also compensate for weaker 
recruitment of response inhibition systems when younger adolescents engage in response inhibition. 
Previous work has also found that the developmental trajectories of brain activity during response 
inhibition differ for young males and females (Rubia et al., 2013) and therefore it is also possible that 
there might be an interaction between age and gender that influences the neural mechanisms underlying 
response inhibition in adolescents. It would be interesting in future work to investigate this possibility. 
 Finally, our social network metrics were constructed based on adolescents’ Facebook 
relationships, and this is only one method to identify social relationships. There are likely other types of 
relationships that influence adolescents’ self-control that are poorly captured by online social network 
metrics, such as relationships with teachers or other adult family members who are not linked through 
online social media. Future work using multiple approaches to collect information about social networks 
(c.f., Vettel et al., 2018) might yield further insights into the link between brain networks and social 
networks and their importance for adolescent development. 
 
Conclusions 

In the current work, we employed a network approach to analyze brain data and examined the 
moderating role of social context. Taken together, this work suggests that adolescents with larger social 
networks with more communities recruit more diverse brain systems to successfully inhibit prepotent 
responses. Our results demonstrate that the relationship between behavior and brain activity, as well as 
connectivity between brain systems, is context-dependent. These results strongly motivate future work to 
examine how elements of the social context influence adolescent brains. Our work also provides insight 
into developmental differences in neural mechanisms involved in response inhibition. Previous work has 
found that adolescents, relative to adults, are more likely to recruit brain regions outside the canonical 
response inhibition network when completing a Go/No-Go task (Rubia et al., 2013; Tamm et al., 2002). 
Although this observation is often explained by an assumption of less mature or less developed brain 
states reflective of weaker executive function in adolescents, we suggest that these more distributed brain 
activations might instead reflect an adaptive response to an adolescent’s social environment. 
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Method 
Participants 

One hundred and three adolescent males who recently received their license (restricted to 16-
year-olds) were recruited through the Michigan state driver registry database as part of a larger study on 
peer influences on adolescent driving. Participants met standard MRI safety criteria.  In accordance with 
Institutional Review Board approval from the University of Michigan, legal guardians provided written 
informed consent, and adolescents provided written assent. Due to technical malfunction, social network 
data was lost for 29 participants and Go/No-Go performance data was lost for an additional 10 
participants. One participant was excluded due to poor performance on the Go/No-Go task (accuracy on 
No-Go trials less than 50%), and one participant was excluded due to excessive head motion during the 
fMRI scan (greater than 3mm framewise displacement). Consequently, analyses were conducted on the 
62 remaining 16-year-old adolescent males. 
 
Response Inhibition Task (Go/No-Go) 

While lying prone in a scanner continuously acquiring BOLD MRI data, adolescents completed a 
series of tasks including a response inhibition Go/No-Go task (Aron, Fletcher, Bullmore, Sahakian, & 
Robbins, 2003; Logan, 1994). In this task, 80% of trials were considered Go trials and 20% of trials were 
considered No-Go trials. On each trial, a letter was presented on the screen. Participants were instructed 
to press a button if the letter was an A through F, but they had to withhold their response and not press a 
button if the letter was an X. Letters were presented for 500 ms, followed by a 1000 ms fixation interval. 
Go trials were considered correct if participants pressed a button before the next trial began, whereas No-
Go trials were considered correct if participants did not press a button before the next trial began. To 
account for the tradeoff between speed and accuracy when inhibiting prepotent responses, performance 
was measured using Go/No-Go efficiency: 

 

 
where !"!" represents the average response time on Go trials and !""!"#" represents the percentage of 
No-Go trials where the participants correctly withheld a response. To enhance interpretability, we 
subtracted the proportion of response time to accuracy from unity so that higher scores indicate better 
performance. 
 
Real-life Social Network Properties 
 Outside of the scanner, participants provided access to their Facebook network data using an 
online survey. Specifically, participants logged into their Facebook account, and the Facebook 
OpenGraph API (collected in 2011-2013) was used to assess participants’ Facebook activity, friends, and 
links between friends. We first anonymized the data and then used the NetworkX package implemented in 
Python 2.7 to construct binary, undirected graphs of each participant’s social network where each 
Facebook friend is represented as a node in the graph and each connection between friends (Facebook 
friendship) is represented as an edge on the graph. Each graph was encoded in an N × N adjacency matrix 
where N is the number of Facebook friends and the ijth matrix element represents whether person i is a 
friend of person j. 

Using NetworkX, we then computed the size, number, and modularity of communities for each 
adolescent’s social network. The size of each network was defined as the total number of friends. To 
determine the number of communities in each network, we used a Louvain-like locally greedy algorithm 
(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) to maximize the following modularity quality 
function:  
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where Aij represents the strength of the connection between nodes i and j, ki represents the sum of the 
connection strengths for nodes connected to node i, 2m is the sum of all the connection strengths in the 
network, δ is the Kronecker delta, and ci represents the community to which node i is assigned. 
Intuitively, the algorithm segregates friends into non-overlapping groups by maximizing the number of 
within-group connections, in comparison to that expected in an appropriate random network null model, 
which here we define as the configuration model (also known as the Newman-Girvan null model; 
Newman & Girvan, 2004).  

After optimizing the modularity quality function, we obtain both a partition of nodes into 
communities and a maximum Q value, the latter of which is often referred to as the network modularity 
(Newman, 2006). Network modularity ranges from 0 to 1, where a densely connected network (i.e., all of 
an adolescent’s friends are also friends with each other) has a score closer to 0 whereas a segregated 
network (i.e., an adolescent has separate clusters of friends from school, the neighborhood, sports) has a 
score closer to 1.  
 
fMRI Data Acquisition and Preprocessing 

Functional images were recorded using a reverse spiral sequence (repetition time = 2,000 ms, 
echo time = 30 ms, flip angle = 90°, 43 axial slices, field of view = 220 mm, slice thickness = 3 mm, 
voxel size = 3.44 × 3.44 × 3.0 mm). We also acquired in-plane T1-weighted images (43 slices, slice 
thickness = 3 mm, voxel size = 0.86 × 0.86 × 3.0 mm) and high-resolution T1-weighted images [spoiled 
gradient recall (SPGR) acquisition, 124 slices, slice thickness = 1.02 × 1.02 × 1.2 mm] for use in co-
registration and normalization. Functional data were preprocessed using Statistical Parametric Mapping 
(SPM8, Wellcome Department of Cognitive Neurology, Institute of Neurology, London). The first four 
volumes were discarded before analysis. Functional images were despiked using the 3dDespike program 
as implemented in the AFNI toolbox, corrected for differences in slice time acquisition, and spatially 
realigned to the first functional image. To mitigate remaining nuisance signals, we then applied a high-
pass filter with a cutoff of 128 sec, and the subsequent volumes were weighted according to the inverse of 
their noise variance using the robust weighted least squares toolbox (Diedrichsen, Hashambhoy, Rane, & 
Shadmehr, 2005). Functional and structural images were co-registered using a two-stage procedure. First, 
in-plane T1 images were registered to the mean functional image. Next, high-resolution T1 images were 
registered to the in-plane image. Structural images were then skull-stripped and normalized to the skull-
stripped MNI template provided by FSL (Oxford Centre for Functional MRI of the Brain). 

Additional pre-processing steps were implemented for the functional connectivity analyses. Data 
were bandpass filtered between 0.06 and 0.12 Hz, detrended, and standardized. Using the nilearn package 
in Python 2.7, we extracted regional timeseries from 5mm spherical regions defined from a whole-brain 
atlas (Power et al., 2011) and regressed out the average timeseries in each individual’s white matter and 
cerebrospinal fluid, as well as six head motion parameters. We also censored frames with framewise 
displacement (FD) > 0.5 mm and excluded participants with more than 40% of frames censored. The 
results were unchanged when censored frames were included in analyses.  
 
Putative cognitive systems 

Our work employed a well-studied parcellation of the brain with 264 regions of interest that were 
each comprised of a 5 mm sphere (Power et al., 2011). From this whole-brain parcellation, we identified 
the regions that were specifically involved in response inhibition by conducting a reverse inference meta-
analysis using the term “response inhibition” in the Neurosyth database (Yarkoni, Poldrack, Nichols, Van 
Essen, & Wager, 2011). Similarly, to identify regions involved in self-processing and mentalizing, we 
conducted two additional reverse inference meta-analyses using the terms “self-referential” and 
“mentalizing,” respectively. For each meta-analysis, we identified studies that matched the key phrase 
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(threshold = 0.001, results of database query as of October 2017), yielding 176 studies related to response 
inhibition, 127 studies related to self-processing, and 124 studies related to mentalizing. For each set of 
studies, we submitted the associated MNI coordinates to a Neurosynth meta-analysis and saved the FDR-
corrected (p<0.01) reverse inference map. 

 Regions of interest were considered to be involved in the process of interest if at least half of the 
voxels in the region were significantly activated in the FDR-corrected reverse inference map for that term. 
Interestingly, we found no overlap between regions involved in response inhibition and regions involved 
in self-processing or mentalizing as defined by the Neurosynth meta-analyses. We did, however, find 
overlap between regions involved in self-processing and mentalizing systems; to allow us to differentiate 
between these two terms, we excluded 12 regions involved in both processes. All analyses reported in this 
study include 21 mentalizing regions (which we refer to collectively as the mentalizing system), 8 self-
processing regions (which we refer to collectively as the self-processing system), and 13 response 
inhibition regions (which we refer to collectively as the response inhibition system; see Figure 1 panel A). 
 
Statistical analysis of imaging data 

In our analyses, we focused on three markers of neurophysiological dynamics. First, we measured 
the average BOLD activation of each system during correct No-Go versus correct Go trials, as a marker 
of neural processes related to successful inhibition of prepotent responses. Second, we measured the 
functional connectivity within each system, operationalized as the average Pearson correlation coefficient 
estimated between time series of any two nodes in the system. Third, we measured the functional 
connectivity between systems, operationalized as the average Pearson correlation coefficient estimated 
between time series of any node in one system and any node in another system. We tested whether any of 
these three markers was associated with the behavioral measure of response inhibition efficiency, as well 
as whether these markers of neurophysiological dynamics might interact with one another to promote 
more efficient response inhibition. 

 
System activation. Our first set of analyses examined mean activation for correct No-Go versus correct 
Go trials to investigate neural activity associated with successful response inhibition. Using a general 
linear model implemented in SPM8, the voxel activity was predicted from weighted beta coefficients for 
BOLD activity during correct No-Go trials, false-alarm No-Go trials, and missed Go trials. The correct 
Go trials were treated as an implicit baseline condition. Next, we computed mean activity for each of the 
three cognitive systems of theoretical interest: response inhibition, self-processing, and mentalizing 
systems. We extracted the contrast weight coefficients for the correct No-Go trials versus correct Go trials 
from each of the 42 regions of interest identified as a member of one of the three systems (Figure 1 panel 
A), and we averaged the response across each region in the system to calculate mean system activity. 

We conducted three subsets of analyses using the mean activity of each system to test our planned 
hypotheses. The first subset investigated whether the system was recruited during successful inhibition of 
prepotent responses. Using one-sample t-tests, we assessed whether average activation in the response-
inhibition system, self-processing system, and mentalizing system was stronger for correct No-Go versus 
correct Go trials. In the second subset of tests, we more directly assessed the system’s role in task 
performance variability. Using a separate model for each of the three systems, we computed the 
correlation between average system activity and the Go/No-Go efficiency score that accounts for the 
speed/accuracy trade-off during task performance (see Eq. 1). Finally, the third subset of tests employed 
multiple regression analyses to examine the interaction between systems and task performance. Given 
multicollinearity between the self-processing and mentalizing systems, we built two models using the 
Go/No-Go efficiency score as the dependent variable: (i) one model used mean activation in the response 
inhibition system and mean activation in the self-processing system as independent variables, whereas (ii) 
the other used mean activity in the response inhibition and mentalizing systems as independent variables. 
 
Functional Connectivity. Our second set of analyses examined similar questions as the mean activation 
analyses, but here, the cognitive system activity was characterized using functional connectivity to 
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examine within- and between-system communication. Using the same 42 regions that comprise the three 
cognitive systems (Figure 1 panel A), we computed the Pearson correlation coefficient between the time 
series of each pair of regions separately for each run for each participant. We constructed a 42 × 42 
functional connectivity matrix where the ijth element of the matrix represented the correlation coefficient 
between the activity time series of region i and the activity time series of region j. We then averaged the 
functional connectivity matrices for the two runs for each participant to yield a single functional 
connectivity matrix for each participant. We then averaged the connectivity across all regions within each 
of the three cognitive systems to compute each system’s within-system connectivity. Finally, we 
computed two between-system connectivity values as the Pearson correlation coefficient between the 
response inhibition system and each of the two social brain systems (response inhibition x mentalizing, 
response inhibition x self-processing). 

We then used both within- and between-system connectivity in two subsets of hypothesis-driven 
analyses. The first subset mirrored those executed using mean system activation and examined whether 
connectivity was associated with task performance variability. Using a separate model for each of the 
three systems, we computed the correlation between the Go/No-Go efficiency score and within-system 
connectivity. Two additional models assessed the correlation between the Go/No-Go efficiency score and 
each of the between-system connectivity values. The second and final subset of analyses directly tested 
whether functional connectivity might compensate for weaker mean activity in an adolescent’s response 
inhibition system to preserve successful task performance. To test this hypothesis, we ran 5 separate 
multiple regression models using the Go/No-Go efficiency score as the dependent variable: the first three 
had mean activation in the response inhibition system and one of the within-system connectivity as the 
independent variables, whereas the other two had mean activation in the response inhibition system and 
one of the between-system connectivity as the independent variables. 
 
Social Network Moderation Analyses. Finally, we investigated the relationship between an adolescent’s 
real-life social network structure and their neural and behavioral responses during a response inhibition 
task. Following similar logic as the mean activation and connectivity analyses, we employed each of the 
three properties of their real-life social network in two subsets of analyses. Separate models were 
employed throughout this set of comparisons based on the multicollinearity between activation across the 
three cognitive systems (i.e., individuals with greater activation in one system tended to have greater 
activation in other systems) as well as the multicollinearity among the social network metrics (e.g., 
individuals with a larger social network tended to have more communities within the social network). 

The first subset of analyses examined the relationship between each network property and the 
neural response during task performance. A correlation was computed for each combination of network 
property metric (number, size, and modularity of communities) and brain measurement (mean activity of 
each system, within-connectivity of each system, and the two between-system connectivity values). The 
second and final subset of analyses assessed whether any of the three social network properties moderated 
the observed relationship between brain activity and task performance. Separate regression models were 
run with the adolescents’ Go/No-Go efficiency score as the dependent variable and each combination of 
brain measurement (mean activity of each system, within-connectivity of each system, and the two 
between-system connectivity values) and social network property (number, size, and modularity of 
communities) as the independent variables. 
 
!  
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Figure Legends 
 
Figure 1. Recruitment of brain systems during a task requiring response inhibition. (A) Regions in 
the canonical response inhibition system identified using Neurosynth included the basal ganglia and IFG 
(red), whereas self-processing regions included the ventral mPFC, PCC, and temporal pole (blue), and 
mentalizing regions included the dorsal mPFC, PCC, and TPJ (green). (B) Average activation in the 
response inhibition, self-processing, and mentalizing systems for correct No-Go trials versus correct Go 
trials. (C) Scatterplot of Go/No-Go efficiency score versus mean activation of the response inhibition 
system. (D) Scatterplot of Go/No-Go efficiency score versus mean activation of the self-processing 
system. (E) Scatterplot of Go/No-Go efficiency score versus mean activation of the mentalizing system. 
 
Figure 2. Interaction between response inhibition activation and social brain systems. (A) 
Relationship between mean activation in the self-processing system and Go/No-Go efficiency scores 
differs for adolescents with stronger mean activation in the response inhibition system (solid line) versus 
adolescents with weaker mean activation in the response inhibition system (dashed line). (B) Relationship 
between mean activation in the mentalizing system and Go/No-Go efficiency scores differs for 
adolescents with stronger mean activation in the response inhibition system (solid line) versus adolescents 
with weaker mean activation in the response inhibition system (dashed line). 
 
Figure 3. Relation between inter-system connectivity and Go/No-Go efficiency score. (A) Scatterplot 
of Go/No-Go efficiency score versus connectivity between the response inhibition system and self-
processing system. (B) Scatterplot of Go/No-Go efficiency score versus connectivity within the self-
processing system.  (C) Relationship between response inhibition system x self-processing system 
connectivity and Go/No-Go efficiency scores differs for adolescents with stronger activation in the 
response inhibition system (solid line) versus adolescents with weaker activation in the response 
inhibition system (dashed line). (D) Relationship between connectivity within the self-processing system 
connectivity and Go/No-Go efficiency scores does not differ for adolescents with stronger activation in 
the response inhibition system (solid line) versus adolescents with weaker activation in the response 
inhibition system (dashed line). 
 
Figure 4. Association between mentalizing system and social network properties. (A) Scatterplot of 
social network size (number of friends) and connectivity within the mentalizing system. (B) Scatterplot of 
number of social network communities and mean activation in the mentalizing system. 
 
Figure 5. Social network properties moderate the relationship between brain and behavior.  (A) 
Relationship between response inhibition system x self-processing system connectivity and Go/No-Go 
efficiency scores differs for adolescents with more communities in their social network (solid line) versus 
adolescents with fewer communities in their social network (dashed line). (B) Relationship between 
activation in the response inhibition system and Go/No-Go efficiency scores differs for adolescents with 
more communities in their social network (solid line) versus adolescents with fewer communities in their 
social network (dashed line). 
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Figure 1. 
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