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ABSTRACT

The essential idea is to show how norms can emerge spontaneously
at the social level from the decentralized interactions of many
individuals that cumulate over time into a set of social expectations.
Due to the self-reinforcing nature of the process, these expectations
tend to perpetuate themselves for long periods of time, even though
they may have arisen from purely random events and have no a priori
justification.  We show that social expectations gravitate to one of
three conditions:  i) an equity norm in which property is shared equally
among claimants, and there are no “class” distinctions;  ii) a
discriminatory norm in which the claimants get different amounts
based on observable characteristics that have become socially
salient (but are fundamentally irrelevant); and iii) fractious states in
which norms of distribution have failed to coalesce, resulting in
constant disputes and missed opportunities.
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1 Introduction

Norms are self-enforcing patterns of behavior: it is in everyoneÕs interest to
conform given the expectation that others are going to conform.  Many
spheres of social interaction are governed by norms: dress codes, table
manners, forms of deference, modes of communication, reciprocity i n
exchange, and so forth.  In this paper we are interested in norms that govern
the distribution of property.  In particular, we are concerned with the contrast
between discriminatory norms , which allocate different shares of the pie
according to gender, race, ethnicity, age, etc., and equity norms , which do not
so discriminate.  An example of a discriminatory norm is the practice of
passing on inherited property to the eldest son (primogeniture).  Another is
the custom, once common in the southern United States, that blacks should
sit in the back of the bus.  A third is the notion that certain categories of
people (e.g., women, blacks) should receive lower compensation than others
doing the same job, and in other cases that they not be given the job at all.
These kinds of discriminatory norms can lead to significant differences i n
economic class, that is, long-lived differences in property rights based on
characteristics that are viewed as socially salient. 1

In this paper we study the question of how such classes can emerge and
persist, given a norm-free, classless world initially.  The framework combines
concepts from evolutionary game theory on the one hand and agent-based
computational modeling on the other.  The essential idea is to show how
norms can emerge spontaneously at the social level from the decentralized
interactions of many individuals that cumulate over time into a set of social
expectations.  Due to the self-reinforcing nature of the process, these
expectations tend to perpetuate themselves for long periods of time, even
though they may have arisen from purely random events and have no a
priori justification.  We show that social expectations gravitate to one of three
conditions:  i) an equity norm in which property is shared equally among
claimants, and there are no ÒclassÓ distinctions;  ii) a discriminatory norm i n
which the claimants get different amounts based on observable characteristics
that have become socially salient (but are fundamentally irrelevant); and iii)
fractious states in which norms of distribution have failed to coalesce,
resulting in constant disputes and missed opportunities.  In both the first and
second case, society functions efficiently in the sense that no property is
wasted.  There is no equity-efficiency tradeoff, just a difference in the way
property rights are distributed.  The third case, by contrast, is highly inefficient
and may involve substantial inequality as well.

                                                
1   For other models of classes see  Roemer [1982] and Cole et al. [1998].  The present paper differs
from these by focusing on the dynamic process by which classes emerge, rather than on the
equilibrium conditions that sustain them.



The       Emergence      of       Classes...                                                                                                        Axtell,       Epstein       and       Young   

2

The long run probability of being in these three different regimes can be
computed using techniques from stochastic dynamical systems theory
(Freidlin and Wentzell [1984];  Foster and Young [1990];  Young [1993a, 1998];
Kandori, Mailath and Rob [1993]).  But these methods are less helpful i n
characterizing the short and intermediate run behavior of these processes.
Here agent-based computational techniques can play a central role, by
identifying regimes that are long-lived on intermediate time scales, though
not necessarily stable over very long time scales (Epstein and Axtell [1996],
Axtell and Epstein [1999]).

Overview of the Model

Our model of class formation is based on Young's evolutionary model of
bargaining (Young [1993b]). The model is bottom-up in the sense that norms
emerge spontaneously from the decentralized interactions of self-interested
agents.2  In each time period two randomly chosen agents interact, bargaining
over shares of available property.  Their behavior, and their expectations
about others' behavior, evolve endogenously based on prior experiences.
These expectations may be conditioned on certain visible characteristics or
"tags" that serve to differentiate people.  These tags have no inherent social or
economic significanceÑthey are merely distinguishing features, such as dark
or light skin, or brown or blue eyes.  Over time, however, they can acquire
social significance due to path dependency effects. It might happen, for
example, that blue-eyed people get a larger share of the pie than brown-eyed
people due to a series of chance coincidences.  The existence of these
precedents causes the expectation to develop that blue-eyed people generally
get more than brown-eyed people, and a discriminatory norm  emerges.
Alternatively, an equity norm  can develop in which the tags have no
significance, and both sides get equal shares.

It can be shown that, asymptotically, the equity norm is more stable than any
discriminatory norm. In other words, starting from arbitrary initial
conditions, society is more likely to be at or near an equal sharing regime than
an unequal or discriminatory one if we wait long enough.  Nevertheless,
metastable regimes can emerge that are discriminatory and inequitable, yet
persist for substantial periods of time.  These inequitable regimes correspond,
roughly speaking, to situations where a discriminatory inter-group norm
divides society into upper and lower classes, while a different, intra-group
norm causes dissension within one (or both) of the classes.  Based on many
realizations of the agent-based computational model, we estimate the time it
takes to exit from these discriminatory regimes as a function of the number of
agents, the length of agents' memory, and the level of background noise.   In
                                                
2  We use the term ÒemergentÓ as defined in Epstein and Axtell [1996] to mean simply Òarising
from the local interactions of agents.Ó  The term and its history are discussed at length in
Epstein [1999].
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this case, the waiting time increases exponentially in memory length and t h e
number of agents, and can be immense even for relatively modest values of
the parameters.  The contrast between long-run and intermediate-run
behavior illustrates how analytical and computational methods complement
one another in studying a given social dynamic.

2 Bargaining

We begin by modelling a bargaining process between individual agents.
Consider two players, A and B, each of whom demands some portion of a
"pie," which we take as a metaphor for a piece of available property.  The
exact nature of the property need not concern us here. For simplicity,
however, we shall suppose that the property is divisible, and that both parties
have an equal claim to it a priori.3  A posteriori differences in claim will
emerge endogenously from the process itself.

To specify the process, we must first delineate how agents solve the one-shot
bargaining problem.  A standard way of modelling this situation is the N a s h
demand game : each party gets his demand if the sum  of the two demands is
not more than 100 percent of the pie, otherwise each gets nothing.  For
instance, if employers and employees demand more than 100 percent of total
revenues, negotiations break down.

To simplify the analysis, we shall suppose that each agent can make just three
possible demands: Low (30 percent of the pie), Medium (50 percent), and High
(70 percent).4 For example, if row demands H and column plays M, their
demands sum to 120 and each gets nothing.  The payoffs (in percentage share)
from all combinations of demands are shown in Table 1.

H M L

H 0,0 0,0 70,30

M 0,0 50,50 50,30

L 30,70 30,50 30,30

Table 1:  The Nash demand game

This yields a coordination game in which there are exactly three pure-strategy
Nash equilibria, shown in bold:  (L, H), (M, M), and (H, L).  While various
theories have been advanced that identify a particular equilibrium as being
most plausible a priori (e.g., Harsanyi and Selten [1988]), we do not find these

                                                
3  Indivisible forms of property, such as a bus seat, can be made divisible by giving the
claimants equal a priori chances at being the occupant.
4  The more general case is considered in Young [1993b].
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equilibrium selection theories to be especially compelling. Instead of
assuming equilibrium, we wish to explore the process by which equilibrium
emerges (if indeed it does) at the aggregate level, from the repeated,
decentralized interactions of individuals.

3 The Model with One Agent Type

We begin by studying this question for a population of agents who are
indistinguishable from one another, but who have different experiences (life-
histories) that condition their beliefs. Then we consider a population
consisting of two distinct types of agents, who are differentiated by a visible
"tag" (dark or light skin, brown or blue eyes) that has no intrinsic economic
significance, but on which agents may condition their behavior.  In the latter
case, long-lived discriminatory norms can develop purely by historical
chance, while this does not happen in the case of homogeneous agents.  But
in both situations, fractious regimes can emerge in which society fails to
develop any coherent norm for long periods of time.

Let the population consist of N  agents.  Each time period consists of  N/2
"matches."  In each match, one pair of agents is drawn at random from the
population, and they play the game in Table 1.5  Each agent's data about its
worldÑits beliefsÑare based on experience from previous plays.  In
particular, every agent remembers the demandsÑH, M, or LÑplayed by each
of her last m  opponents, where m  is memory length.6  The concatenation of
all agent memories defines the current state of the society.  Behaviorally, each
agent forms an expectation about her opponentÕs demands.  She assumes that
the probability of the current opponent demanding L, M, or H is equal to the
relative frequency with which her previous opponents made these demands
in the last m  interactions.  But with some relatively small probability, ε, she
selects her demand randomly.  Her behavior is thus a kind of Ônoisy best
replyÕ to her past experience:

o With probability 1 - ε an agent makes a demand that maximizes her
expected payoff given her expectations about the opponent's behavior.
If several demands maximize expected payoff, they are chosen with
equal probability.

o With probability ε the agent does not optimize, but chooses one of the
three demands, H, M, or L, at random.

These rules for matching, belief formation, and behavior define a particular
social dynamic  as a function of the population size N, memory length m, and
error rate ε.  Notice that it is a Markov process, because there is a well-defined
                                                
5   Some agents may be active more than once in a particular period, while others are inactive.
On average, agents are active once per period.
6   Some agents may have larger memories than others, that is, m may be a random variable in
the agent population.
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probability of moving from any given state s to any other state s' in the next
period.

In this model, agents' beliefs evolve according to their particular experiences.
Thus, at any given time, the beliefs can be highly heterogeneous because
agents will have had different histories of interactions with others.
Importantly, moreover, these beliefs may be inconsistent with the actual state
of the world.  A given agent's experiences may not be representative of
behavior in the whole population.  For example, one agent, say A, might by
chance have been matched against opponents who demanded H in each of
the last m  periods.  Thus A  will believe that the next opponent is likely to
demand H, so she is very likely to demand L (which is a best reply to H).  But
another agent, say B, may have been matched against opponents who always
demanded M; for this agent it makes sense to demand M.  The reality,
however, could be that most people in the population actually plan to
demand L, in which case the beliefs of both A  and B are at variance with the
facts.  Moreover, if A is matched against B in the next round, they will make
the demands (L, M) with high probability, which is not an equilibrium of the
one-shot game bargaining game.

A social norm  is a self-perpetuating state in which playersÕ memories, and
hence their best replies, are unchanging.  In other words, it is a rest point or
equilibrium of the dynamical system when the error term ε = 0.  Consider, for
example, the state in which everyone's experience is that opponents always
demand M. Then everyone believes that her next opponent will play M.
Given these beliefs, M is a best response.  Assuming there are no errors (ε = 0),
both sides demand M in the next period.  Thus, agents' beliefs about
opponents turn out to be correct, and this situation perpetuates itself from
one period to the next. This is the equity norm in which everyone expects the
other to demand one-half, and as a result everyone does in fact demand one-
half.   Note that this social norm involves no tradeoff between equity and
efficiency: the solution is equitable because both sides get equal shares of each
pie, and it is efficient because there is no rearrangement of shares that makes
all agents better off.  It can be verified that, when there are no observable
differences among agents, the equity norm is the unique equilibrium of the
Nash demand game, and is the unique rest point of the unperturbed social
dynamic.

Simplex representation of agent states

We represent the state of the agent population on a simplex with three
differently shaded regions, as shown in figure 1. At each time, every agent
occupies a position on the simplex that is determined by the content of her
memory.  For example, an agent who has encountered only agents playing L
is located at the lower right vertex of the simplex (labeled ÔlowÕ).  The shading
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within the simplex represents the best reply strategy given  the agent's
memory.  That is, since each agent best replies to her memories, an agentÕs
location on the simplex can be though of as representing her expectation
about her opponents' play.  In the white region L is the best reply since
memory configurations here are dominated by H.  In the dark gray zone the
opposite occursÑmemories are dominated by HsÑso L is the best reply.
Agents in the light gray zone have memories for opponents playing M, so it is
best for them to play M as well.

lowmedium

high

Figure 1:  Memory simplex for one agent type

Starting from different initial states, we can examine various realizations of the
process.7  Suppose for example that N  = 100, m  = 10 and ε = 0.2, and the initial
state is random about the point of indifference between the three strategies.
After 80 periods the process can evolve to the situation shown in Figure 2.8  In
this new state, all agents have encountered frequent demands of M in the past,
and thus they expect their opponents to play M in the next period.  Given this
expectation, M is the best response. Hence most agents play M next period, which
reinforces the expectation of M.  However, by a process we do not model
explicitly, agents occasionally deviate from best reply and play either H or L.  This
may occur due to random errors, conscious experimentation, simple imitation or
for any number of other reasons.  This is analogous to mutation in biological
models and serves to create variety in the population.9  

                                                
7  A working version of this model is available on the world-wide web.  It is written in Java and
can be found at the URL: www.brookings.edu/es/dynamics/papers/classes.
8  There are less than 100 dots shown in the figures because some agents have the same memory
state.
9  Each matched agent chooses randomly with probability ε = 0.20.   However, there is a one-
third chance that the random choice will in fact be the best reply, hence the probability tha t
an "error" is realized is 0.1333...
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lowmedium

high

Figure 2:  Convergence to the equity norm

If the process is allowed to continue from the state shown in Figure 2, the
probability is high that most agents will remain in the light gray region for
quite a long period of time.  This is because the equity norm has a large basin
of attraction, and even substantial deviations caused by random ÔmutationsÕ
in individual behavior may not be enough to tip society into a fundamentally
different regime.  Nevertheless such tipping events will eventually occur,
and they can lead to regimes that have a fundamentally different character.

Such inequitable regimes may also emerge right away when we start from a
different initial state.  Figure 3 illustrates this for one realization of the
process, showing the state after 150 periods.

lowmedium

high

Figure 3:  Emergence of a fractious state
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In this fractious state, people at each instant are either aggressive or passive;
they have not learned to compromise.  If, in one's experience, a sufficient
proportion of one's opponents are aggressive (demand H), then it is better to
submit (play L) than to offer to share equally, and conversely.   (It can be
checked, in fact, that M is never a best response for someone who has never
experienced an opponent who played M.)  This fractious state persists i n
excess of 109 time periods, though it is neither equitable nor efficient.  There is
frequent miscoordination in which the players either demand too much
(both play H) or they demand too little (both play L) and end up leaving part
of the pie on the table.  In the state shown in Figure 3, the average share of pie
per person in each period is only about one-quarter, or about half the expected
share under the equity norm.  But while this is an inefficient state, it does not
exhibit classes, because agents frequently migrate between zones, sometimes
demanding H and sometimes demanding L.

Transitions between regimes
Using asymptotic methods, it can be shown that when both m  and N / m  are
sufficiently large, the probability of being in the equity region is substantially
higher than being in the fractious region if one waits long enough and the
error rate ε is small.  In the terminology of evolutionary game theory, the
equity norm is stochastically stable (Foster and Young [1990]).  The intuitive
reason is that it takes much longer to undo the equity norm once it is
established, than to undo the fractious regime once it is in place.  However,
the inertia of the systemÑthe waiting time to reach the stochastically stable
regimeÑcan be very large indeed.  Suppose that we start the agent society off
in the fractious regime with N  = 10, ε = 0.10, and compute the expected
number of periods to transit to a neighborhood of the equity norm (namely,
to a state where all agents have at least (1 - ε)m  instances of M in their
memories).  As Figure 4 shows, the waiting time increases exponentially i n
memory length.  For example, when m = 13 it takes in excess of 105 periods on
average for the fractious regime to be displaced in favor of the equity norm.
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Figure 4:  Transition time between regimes as a function of memory length,
N = 10, various ε

Similarly the transit time increases exponentially with population size, as
shown in Figure 5.

20 40 60 80 100
Agents

1000

10000

100000.

1. ´ 106

1. ´ 107
Transition Time

e = 2%

e = 5%

e = 10%

Figure 5:  Transition time between regimes as a function of population size,
m = 10, various ε

Hence, although the equity norm is stochastically stable, the agent-based
computational model reveals thatÑdepending on the number of agents and
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the memory lengthÑthe waiting time to transit from the fractious regime to
the equity norm may be astronomically long. 10

Broken ergodicity11

In figure 4, for m  = 18, the expected number of time periods the society must
wait in order to move from the split regime to the equity norm is O(106).  In
human societies, a million interactions per agent is not realizable.  So how
are we to interpret such large interaction requirements?

Dynamical systems which are formally ergodic but which possess subregions
of the state space that confine the system with high probability over a long
time scale are said to display broken ergodicity with respect to that time
scale.12  Call Rtrans(m , N, ε), the rate of transition from the split state to the
equity norm.  For example, from figure 4, for m  = 18, this rate would be
approximately 10-6.  Now, say that the lifetime of the society is T Ç 1/Rtrans(m,
N, ε).  Then, to a first approximation the probability of regime transition
Prtrans (T, m, N, ε) = TRtrans(m, N, ε).  A system has effective broken ergodicity
if Prtrans (T, m, N, ε) < p0, where p0 is some small level of significance, say
0.001.  Clearly, the exponential dependence of transition times on memory
length and population size implies that our model society displays broken
ergodicity.

We can summarize these results as follows.  Occasional random choices
create noise in the system, which implies that no state is perfectly absorbing.
However, there are two regions of the state spaceÑone equitable, the o ther
fractiousÑthat are very persistent: once the process enters such a region, it
tends to stay there for a long period of time.  A particular implication is that,
while there is only one pure equilibrium of the game (corresponding to t h e
equity norm), it may be difficult for decentralized decision makers to discover
this equilibrium from certain initial conditions. Put differently, t h e

                                                
10   It is important to note that the expected waiting time depends crucially on the geometry of
the interaction structure.  In this model we have assumed that agents are paired at random from
the whole society.  In reality, agents interact in social networks in which there are both local
(neighborhood) and global (long range) interactions.  The existence of such neighborhood
structures can greatly reduce the dependence of the social learning process on population size
(Ellison [1993], Young [1998]).  Intuitively, the reason is that a local switch in regimeÑsay from
fractious to equitableÑmay be relatively easy because it involves only a small number of agents
(the local population size is small).  Agent behavior in local interaction models is, however,
quite different than in the model described here.  Agents repeatedly interact with the same
agents in such models, and memory plays no essential role, i.e., interactions are not anonymous.
11  The authors thank Kai Nagel and Maya Paczuski for suggesting the relevance of this
concept to our results.
12  For a review article on broken ergodicity see Palmer [1989].
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computation of the equity norm by a decentralized society of agents is "hard"
in the sense that it takes exponential time to achieve it from some states.13

4 Two Agent Types:  The "tag" Model

Thus far agents have been indistinguishable from one another. Even though
they have different experiences that lead them to act differently, they look the
same to others.  Let us now suppose that agents carry a distinguishing tag (e.g.,
light or dark).14  The tag is completely meaningless in that agents are identical
in competence; for example they have the same amount of memory and
follow the same behavioral rule (conditional on experience).   However, the
presence of the tag allows agents to condition their behavior on the tag of
their opponents.   To be specific, assume that each agent records in his
memory the tag of his opponent and the demand that he made.  Faced with a
new dark opponent, the agent demands an amount that maximizes the
expected payoff against his remembered distribution of dark opponents.15  
Faced with a light opponent, the agent plays a best reply against his
remembered distribution of light opponents.  All of this happens with high
probability, but with some small probability ε > 0 agents make random
demands. In this model, the social possibilities are richer than before,Êsince
equity or fractiousness can prevail both between and within types.

To fix ideas, assume for the moment that there is no noise in the agents'
strategy choice (ε = 0).  Define an intergroup equilibrium as a state in which
each agent in the light group demands x against members in the dark group,
each agent in the dark group demands 1 - x against each opponent from the
light group, and this is true for every previous encounter that each agent
remembers. An intragroup equilibrium is a state in which everyone demands
one-half against members of his own group, and this is true for every
previous encounter that each agent remembers.

Using methods from perturbed Markov process theory (Young, [1993a]), it can
be shown that when m  and N / m  are sufficiently large, then the unique
stochastically stable state corresponds to the particular case where x = 1/2; that
is, equity prevails both between and within groups. When ε is sufficiently
small, this state or something close to it will be observed with very high
probability in the long run.  But, as before, there exist fractious states and
inequitable norms that have considerable staying power.  Furthermore, the
                                                
13   The view of social systems as distributed computational devices, and the associated
characterization of various social problems as computationally hard, are developed more fully
in Epstein [1999] and Epstein and Axtell [1996];  see also Shoham and Tennenholtz [1996] and
DeCanio and Watkins [1998].
14   For different uses of tags and tag-like devices in agent-based models see Epstein and Axtell
[1996], Holland [1996], and Axelrod [1997].
15  In the event that an agent has no memory of Blue opponents it picks a random strategy.
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dynamics governing the emergence (and dissolution) of inter-group norms
differs from that governing intra-group norms.  

To study these dynamics computationally, we shall represent events on two
simplexes:  the one on the right corresponds to agent memory states when
playing agents of the opposite  typeÑit depicts the inter-group
dynamicsÑwhile the one on the left displays agent memories for playing
agents of the same typeÑthe intra-group dynamics.  Black dots refer to dark
agents, gray dots to light ones.  In each run, there are 100 agents in total, 50 of
each type.  All agents have memory length 20 and the noise level ε = 0.2.  The
initial state differs between the runs in order to illustrate the effects of path
dependency.

Figure 6 illustrates our first case.  Starting from random initial conditions, it
depicts the state of the system at time t = 150.

Intra-type Inter-type

lowmedium

high

lowmedium

high

lowmedium

high

lowmedium

high

Figure 6:  Equity between and within types

At this point the process has reached a state where something close to the
equity norm prevails both between and within groups.  In particular, the
process is in the basin of attraction of the equity norm for dark against dark,
light against light, and light against dark.  Average payoffs in this regime are
high, because most agents succeed in dividing the pie rather than fighting
over it.  

Figure 7 tells a different story.  Starting from a different random initial
conditions, it shows the system at t = 150.  Internally, the darks (black dots)
have come close to the equity norm while the lights (gray dots) are still in a
fractious state.  However, something close to the equity norm prevails
between the lights and the darks.
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Intra-type Inter-type

lowmedium

high

lowmedium

high

lowmedium

high

lowmedium

high

Figure 7:  Equity between, but not within, types

Classes

Yet another history unfolds in figure 8.  In this case the process evolves fairly
rapidly (after 225 periods) to a state in which the equity norm holds within
each group, whereas a discriminatory norm governs relations between the
two groups.  When agents meet others of their own type, most of them expect
to divide the pie in half. But when a dark agent meets a light agent, the darks
act aggressively and the lights act passively.  The result is that, on average, the
payoff to dark agents (70) is over twice as high as it is to light agents (30).  In
other words, class distinctions have emerged endogenously .  Once
established, such class structures can persist for very long periods of time.
The reason is that lights have come to expect that darks will be very
demanding, so it is rational to submit to their demands. Similarly, darks have
come to expect that lights will submit, so it is rational to take advantage of
them.
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Intra-type Inter-type

lowmedium

high

lowmedium

high

lowmedium

high

lowmedium

high

Figure 8:  Equity within, but not between, types

The final case is to us the most interesting.  Starting from a different random
initial state, society evolves after 260 periods to the state shown in Figure 9.
As evident in the right (inter-type) simplex, the darks dominate the lights.
However, from the left simplex, it is clear that the equity norm prevails
within the dominant darks while the lights are a fractious society.  This, then,
is the picture of a divided underclass oppressed by a unified elite.  This result
seems particularly disturbing in that every individual is behaving
rationallyÑplaying the best reply strategyÑand yet the social outcome is far-
from optimal.  Even though this regime does not correspond to a
coordination equilibrium of the bargaining game (unlike Figure 8), it may
nevertheless persist for long periods of time.

Intra-type Inter-type

lowmedium

high

lowmedium

high

lowmedium

high

lowmedium

high

Figure 9:  Equity above, division below
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Transition Dynamics

Figures 4 and 5 above show how the transition time from the fractious
configuration to the equity state depends on the population size and memory
length, for various values of ε.  A similar analysis is possible for the class-like
configurations displayed in figure 9.  That is, we can start the system off in a
configuration with classes and measure how long it takes to transit to the
equity norm, as a function of the model parameters.  We have not executed
such analyses for a simple reason: even for model configurations that should
be hospitable to such transitions (e.g., 10 agents of each type, m  = 10, and ε =
0.1), these events are very rare, and thus difficult to systematically investigate.
This is in sharp contrast to earlier results where O(103) periods were sufficient
on average for such equity transitions to occur. The Ôbasin of attractionÕ of the
class-like configuration is much deeper than the fractious outcome, and the
transition times are correspondingly longer.  It is an open problem to estimate
analytically the expected duration of these transient regimes as a function of
the parameters of the process.

5 Summary

Although class systems can certainly arise through outright coercion (Wright
[1985]), we have argued that various kinds of social ordersÑincluding
segregated, discriminatory, and class systemsÑcan also arise through the
decentralized interactions of many agents in which accidents of history
become reinforced over time.  In these path-dependent dynamics, society may
self-organize around distinctions that are quite arbitrary from an a priori
standpoint.  As we have shown, initially meaningless "tags" can acquire
socially organizing salience: tag-based classes emerge.  While equity norms
have an advantage over discriminatory norms in the very long run,
computational analysis indicates that long-lived regimes may emerge that are
far from equitable, and may be highly inefficient as well.
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Appendix:  State Space of the Multi-Agent Bargaining Game

This model admits a Markovian formulation.  Briefly, call ξ the set of all
possible individual memory configurationsÑeach one a string of length m
(the memory length) recording the demands (H, M, or L) made by an agentÕs
opponents in the most recent m  periods played. In a population of N  agents,
the state space Z of this process is the set of all possible N-tuples of ξ.  The
random matching and strategy choice rules then determine a Markov chain
with fixed transition probabilitiesÑthat is, a |Z|x|Z|transition matrix,
dependent on N, m, and the noise level ε.

The origin of the broken ergodicity displayed by this model for seemingly
modest configurationsÑ10 to 100 agents, each of whom has memory length
O(10)Ñarises from the enormous dimension of the state space, Z.  For
memory length m  and three strategies, the number of distinct memory
configurations is 3m.  Generally, for S strategies there are Sm memory
configurations.  For N  agents, since individual memories are independent,
|Z| = 3Nm; SNm generally.  Therefore, the |Z| x |Z| transition matrix will
have 32Nm entries, S2Nm generally.  However, because any individualÕs
memory configuration can only be converted into 9 others in a single
interaction (S2 others generally), the transition matrix is sparseÑthere are
only 32N transitions possible for each state, thus only 32N x 3Nm = 3N(m+2)

entries in the transition matrix are non-zero; generally, SN(m+2).  Table A.1
below gives numerical values for these various quantities as a function of m ,
for a population of 10 agents (N = 10).

3m 3Nm 3N(m+2) SNm; S = 5
m = 2 9 ≈ 3 x 109 ≈ 1 x 1019 ≈ 1 x 1014

m = 7 2187 ≈ 3 x 1033 ≈ 9 x 1042 ≈ 8 x 1048

m = 10 59,049 ≈ 5 x 1047 ≈ 2 x 1057 ≈ 8 x 1069

m = 20 3,486,784,401 ≈ 3 x 1095 ≈ 9 x 10104 ≈ 6 x 10139

Table A.1:  Number of memory configurations, dimension of the state space
and number of entries in the sparse transition matrix, for N = 10, various m

Even for this relatively small population size, most of these quantities are
enormous.  As a practical matter, a state-of-the-art workstation is not even  
capable of holding the m = 2 state vector in memory, since this would require
some 6 GB of RAM at two bytes per entry, a conceivable although untypically
large quantity of memory (c. 1999).  Furthermore, the corresponding (sparse)
transition matrix is so large that it could not be stored by conventional
meansÑits entries would therefore have to be computed as needed.

The situation is vastly worse for a population size of 100.  Table A.2 gives the
number of memory configurations, dimension of the state space, and the size
of the sparse transition matrix, this time for N = 100.
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3m 3Nm 3N(m+2) SNm; S = 5
m = 2 9 ≈ 3 x 1095 ≈ 7 x 10190 ≈ 6 x 10139

m = 7 2187 ≈ 1 x 10334 ≈ 3 x 10429 ≈ 2 x 10489

m = 10 59,049 ≈ 1 x 10477 ≈ 4 x 10572 ≈ 9 x 10698

m = 20 3,486,784,401 ≈ 2 x 10954 ≈ 5 x 101049 ≈ 9 x 101397

Table A.2:  Number of memory configurations, dimension of the state space
and number of entries in the transition matrix, for N = 100, various m

These quantities are unimaginably large.  However, it turns out that it is
possible to shrink these sizes significantly.  This is because the best reply (BR)
rule of the type employed here does not use any information on the order i n
which past opponents' strategies were encountered.  That is, for m  = 6,
memory string (H, H, H, L, L, L) is equivalent to (L, L, L, H, H, H) for purposes
of BR; in each the frequency of L and H is 0.5.  Because the order of an agent's
memories is unimportantÑat least to this variant of BRÑthe number of BR-
distinct memory configurations is much smaller than Sm.  This permits
significant reduction in sizes of the state space and transition matrix of the
overall Markov process.  Let us call Z, where |Z| = 3Nm, the naive state space.
We explore this smaller (aggregated) state space, Z', presently.16

Call nL, nM, nH the number of low, medium and high memories, respectively,
that some particular agent possesses.  Because these must sum to m, nH can be
written as m  - nL - nM.  Thus, the pair (nL, nM) gives all information needed
by the agent in order to execute BR.  Now, since each n(.)∈  [0, 1,..., m], the
number of distinct memory states is simply (m+1) + m  + (m-1) + ... + 1 =
(m+1) (m+2)/2 = (m2 + 3m  + 2)/2; for m  = 10 the total is 66.  So, |Z'| =
[(m+1)(m+2)]N/2N; for N  = m  = 10 the state space has 6610 ≈ 1.6 x 1018

dimensions, which is smaller than the naive state space from Table A.1 of 5 x
1047 by approximately 3 x 1029.  A dense transition matrix for a state space of
this size is [(m+1)(m+2)]2N/4N in size.  But for the problem at hand this is yet
sparseÑeach state can be converted into only 9 othersÑand thus only
32N[(m+1)(m+2)]N/2N entries need to be stored; for N  = m  = 10, there are
some 5 x 1027 non-zero entries, which is a massive reduction from the 3 x 1052

entries of the transition matrix associated with the naive state space.

Unfortunately, the vast reduction in the size of the state space in going from
Z to Z' does not make the problem tractable computationally.  In particular,
consider the case of S = 3, N  = m  = 10.  In this instance there are only two
recurrent communication classes (see Young [1993a: 68] for definition), one i n
which all agents are in state (M, M, M, M, M, M, M, M, M, M), the
unperturbed equity normÑcall it H1, |H1| = 1Ñand one in which each agent

                                                
16 For more on aggregating Markov processes, see Howard [1971].
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has some combination of (only) L's and H's in memoryÑcall this H2, and
note that there are at most 2100 ≈ 1.3 x 1030 of these states in the naive state
space, while in Z' ,|H2| = 1110 ≈ 2.6 x 1010.  Since |Z'| = 6610, the number of
states outside of both H1 and H2 is 6610 - 1110 - 1 ≈ 6610 ≈ 1.6 x 1018.  Finding the
path with least total resistance between H1 and H2 is indeed a shortest path
problem [Young 1993a: 69], but in 1.6 x 1018 vertices with approximately 910 ≈
3.5 x 109 times that many edges, i.e., 5.5 x 1027 total.  Now, shortest path
problems can be solved in an amout of time linear in the number of vertices
+ edges (cf., Bertsekas and Tsitsiklis [1989]), but a problem of this magnitude is
far beyond the scope of conventional computation.
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