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THE DYNAMICS AND DILEMMAS OF COLLECTIVE ACTION"

Douglas D. Heckathorn

University of Connecticut

Theoretical accounts of participation in collective action have become more
divergent. Some analysts employ the Prisoner’s Dilemma paradigm, other
analysts suggest that different social dilemmas underlie collective action,
and still others deny that social dilemmas play any significant role in collec-
tive action. I propose a theoretically exhaustive inventory of the dilemmas
arising in collective action systems and show that five games, including the
Prisoner’s Dilemma, can underlie collective action. To analyze action within
each game I use a dynamic selectionist model based on three modes of orga-
nization—voluntary cooperation, strategic interaction, and selective incen-
tives. Social dilemmas exist in four of the five games, and conflicting ac-
counts of collective action have focused on different games and modes of
organization. As collective action proceeds from initiation to rapid expan-
sion to stability, its game type varies in a way that can be precisely charac-
terized as movement through a two-dimensional game-space. Finally, I dis-
tinguish between two ways of promoting collective action: One way focuses
on resolving the dilemma within a particular game; the other focuses on

changing the game so the dilemma is more easily resolved or eliminated.

‘ ollective interests do not necessarily

produce collective action. For ex-
ample, not all oppressed groups revolt, even
when, in combination, their power vastly ex-
ceeds that of their controllers. Similarly, in
contemporary political systems, large but
poorly organized constituencies are often
controlled by smaller but better organized
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groups. These examples illustrate failures of
collective action. On other occasions, collec-
tive action can succeed under exceedingly
adverse conditions. For example, in trench
warfare during World War I, informal truces
provided a daily respite from the fighting.
Truces emerged even though soldiers on op-
posing sides could not communicate directly,
and these truces remained stable despite ac-
tive opposition by officers on both sides
(Axelrod 1984). Despite an impressive
growth of theory and empirical research dur-
ing the last several decades, the origins and
dynamics of collective action remain dis-
puted. Indeed, explanations of the forces
leading to participation in collective action
have grown more divergent.

Olson’s (1965) analysis frames much of
the debate. In his view, collective action con-
tains a social dilemma, that is, a situation in
which actions that are individually rational
can lead to outcomes that are collectively ir-
rational. Game theorists have identified
many such dilemmas (Rasmusen 1989). In
Olson’s analysis, everyone seeks to reap the
benefits of others’ participation while evad-
ing the cost of participation. When everyone
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acts in this manner, collective action fails.
Thus, according to Olson, free-riding is a
problem in all but the smallest groups. In
small groups, each individual’s participation
affects the group’s prospects for success, and
it is noticeable to all members. However, in
larger groups, the impact of any individual’s
participation is negligible, so self-interested,
rational individuals will choose to free-ride
unless they are restrained. The result is a
free-rider problem that can be formally rep-
resented as an N-person Prisoner’s Dilemma
(Hardin 1971). This dilemma can be resolved
in two ways. In moderate-sized groups, it can
be resolved through strategic interaction, that
is, reciprocity that says “if you cooperate,
then I will too.” In larger groups, collective
action requires selective incentives, such as
laws or social norms that punish defectors or
reward cooperators. This analysis has been
immensely influential (Oberschall 1973; Opp
1989).

Marwell and Oliver (1993) take issue with
many of Olson’s conclusions. They see col-
lective goods, like other goods, as character-
ized by third-order production functions
(Figure 1A). At the beginning of production,
the curve accelerates, reflecting increasing
marginal returns to initial contributions as
start-up costs are progressively absorbed.
Here, collective action faces a start-up prob-
lem because the return to the initial contribu-
tors is minimal. Unless a “critical mass” of
strongly motivated individuals is willing to
absorb these costs, collective action never
begins. As Marwell and Oliver (1993) state,
“. .. free riding is not the problem in the ac-
celerative case, unless all public goods di-
lemmas are said to be free riding by defini-
tional fiat” (p. 182). Here the threat to col-
lective action is not that some members free-
ride on the contributions of others, but that
no one will see any gain from contribution.
This poses a start-up dilemma.

Next, the function becomes linear in the
range where the marginal gain becomes iden-
tical for early or late contributors. Here, col-
lective action has an all-or-nothing charac-
ter—it is rational for everyone to contribute
or for no one to contribute (Oliver, Marwell,
and Teixeira 1985:533-34), so no subset of
actors can free-ride on the contributions of
others. Hence, again there is no free-rider
problem.

Finally, the curve decelerates, reflecting
the decreasing marginal returns that occur
when output limits are approached. Here free-
riding can arise from two similar mecha-
nisms, “order effects” and a “surplus.” In the
order effect, “[t]he less interested members
free-ride on the initial contributions of the
most interested, and total group contributions
are suboptimal” (Marwell and Oliver 1993:
82-83). This is Marwell and Oliver’s theo-
retical explication of Olson’s (1965) well-
known principle of “the exploitation of the
great by the small” (p. 29). In the surplus
mechanism, free-riding can arise when, con-
sistent with a decelerating production func-
tion, the number of individuals willing to con-
tribute to the collective good decreases as the
number of contributors increases. This pro-
duces a surplus of contributors in the sense
that some of those who were initially willing
to contribute will refuse if others have con-
tributed first. In this case, . . . the first ones
who happen to be faced with the decision [to
contribute] are ‘stuck.” They will contribute
because they find it profitable to do so while
those whose turn to decide comes later will
free-ride” (Marwell and Oliver 1993:85).
This free-rider problem differs from Olson’s.
Whereas for Marwell and Oliver there is no
initial temptation to free-ride, this temptation
is ever-present for Olson. Thus, Marwell and
Oliver’s free-rider problem cannot be repre-
sented as an N-person Prisoner’s Dilemma.
Thus Marwell, Oliver, and Olson identify
three distinct social dilemmas that can under-
lie collective action.

A third group of analysts denies that a
free-rider problem significantly affects col-
lective action (Fireman and Gamson 1979;
Klandermans 1988; Ferree 1992; Oegema
and Klandermans 1994). For example, Fire-
man and Gamson (1979) argue that when ri-
ots and demonstrations are successful it is
because the promoters of collective action
“build solidarity, raise consciousness of com-
mon interests, and create opportunities for
collective action” (pp. 8-9). These increase
the expected value of the movement’s goal
and reduce the cost of participation. They
conclude that Olson’s account of collective
action as requiring selective incentives is ap-
plicable only in “special circumstances.”
Klandermans’s (1988) conclusions after ana-
lyzing participation in unions are similar:
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.. . [T]he possibility that free-rider conditions
are satisfied is highest in companies with the
highest degree of unionization, but such com-
panies also provide the most opportunities for
promoting participation by means of selective
incentives, . . . and so it does not automatically
follow that the number of free riders will be
highest in these companies. (P. 89)

Klandermans (1988:89) attributes most
nonparticipation in collective action, not to
free-riding, but to an expectation that collec-
tive action will fail. He says that participants
in collective action tend to believe that they

can succeed and that their own participation
will make a difference.

Thus, views regarding whether or how so-
cial dilemmas are related to collective action
are highly divergent. My first aim is to de-
rive a theoretically exhaustive inventory of
the dilemmas arising in collective action sys-
tems. This part of the analysis draws on
game theory because each game corresponds
to a unique structure of individual and col-
lective interests. I prove that exactly five
games characterize the structure of opposed
and complementary interests within which
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collective action occurs. In one game, con-
sistent with some critiques of the free-rider
model, no dilemma arises. In each of the
other four games, a distinctive dilemma
arises, including Marwell and Oliver’s start-
up and free-rider problems, Olson’s free-
rider problem, and a fourth type. The analy-
sis further shows that the nature of the stra-
tegic problem is dynamic: It changes during
the course of collective action because a sys-
tem can move through all five game types—
from the initiation of collective action to the
eventual stabilization of a mature production
system. Therefore, differing depictions of
collective action validly apply to distinct
phases of collective action.

Second, I analyze collective action based
on each of the three mechanisms that under-
lie collective action—voluntary cooperation,
strategic interaction, and selective incentives.
Each mechanism plays a distinctive role in
each game type, and hence in each phase of
collective action. Yet many analysts have fo-
cused on only one or two of these mecha-
nisms, and this has contributed to the in-
creasingly diverse views of collective action.

Finally, instead of employing the rational
choice and experiential learning models of
previous analyses of collective action, I show
that an observational learning model can be
used to analyze collective action.

THE ANATOMY OF COLLECTIVE
ACTION

To identify the full range of factors that can
render collective action problematic, I adopt
a two-step approach. First, I specify the
range of situations that can arise during col-
lective action. Second, I analyze these situa-
tions to see what types of games they fit.
This serves to specify when cooperation by
rational actors is problematic and, if so,
whether the dilemma lies in issues of coordi-
nation, in bargaining over how gains are to
be divided, or in lack of trust that the other
will cooperate.

Any collective action system involves
some form of public or semipublic good
(Mueller 1989:11) and hence has two char-
acteristics. First, excluding anyone from con-
sumption of the good is impractical. For ex-
ample, scabs benefit from higher wages won
through strikes. A second characteristic is

jointness of supply. In the case of pure
jointness, production costs are fixed. For ex-
ample, a public monument can be enjoyed by
any number of individuals, so the marginal
cost of each additional viewer is 0. Some
measure of jointness exists if average pro-
duction costs decline as the number of con-
sumers of the good increases. In addition, I
assume that there is a production function
linking contributions by group members to
the ultimate level of public good produced,
and that contributions entail a cost, even if it
is only the opportunity cost of alternative in-
vestments of time forgone. These assump-
tions can be formalized as follows: Coopera-
tion involves production of a collective good
with value V at level L, where L is the pro-
portion of the collective good produced rela-
tive to the maximum amount that could be
produced if all group members contributed to
its production. As defined, L can vary from 0
(no production) to 1 (full production). The
utility of the good produced is the product of
its value and production level, V * L.

Collective action involves two distinct lev-
els. Level one refers to personal contribu-
tions to produce the collective good. In the
simplest case, individuals have the choice of
contributing (cooperating at the first level),
or not contributing (defecting at the first
level). For example, one may decide whether
to participate in a demonstration or help
build a new canoe for one’s village. Level
two refers to what are termed “second-order
collective goods” (Oliver 1980), such as se-
lective incentives to reward first-level coop-
erators or punish first-level defectors. For ex-
ample, one may decide whether to join in
praising those who attended the demonstra-
tion or helped build the canoe, and whether
to scorn those who failed to help.

In the proposed model, individuals are as-
sumed to make dichotomous choices at the
first level, and trichotomous choices at the
second level. At the first level, they make a
choice whether to contribute to collective
goods production at cost K., the cost (K) of
cooperation (c) at level one. The amounts
each actor can potentially contribute are as-
sumed to be equal. (For analyses of the ef-
fects of variations of individual resources on
collective action, see Heckathorn 1993:344—
47 and Marwell and Oliver 1993:116). At the
second level, actors are assumed to have
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three choices: They can contribute to a se-
lective incentive system at cost Ky, the cost
of cooperation at level two; they can oppose
the system of selective incentives at cost K,
the cost of opposition (o) at level two; or they
can defect at this level, incurring no costs.
Finally, if their choices are conditional on
those of others, as when they engage in stra-
tegic interaction, they incur information
costs, K,., termed the “cost of complexity”
(Hirshleifer and Martinez Coll 1988:382).
Under the above assumptions, utility func-
tions have the form,

U=VL-K,-K,-Kp, (D

where U is the actor’s utility, V is the value
of full production of the collective good, L is
the proportion of the collective good that was
produced, K] is first-level cost of cooperation
(i.e., K, or 0, depending on whether the ac-
tor contributes to collective goods production
or defects), K, is second-level cost of coop-
eration (i.e., K., K, or 0, depending on
whether the actor exercises compliant con-
trol, oppositional control, or defects at the
second [normative] level), and Ky is infor-
mation costs (i.e., K,. or O depending on
whether the actor adopts a conditional or
nonconditional strategy).

Voluntary cooperation, strategic interac-
tion, and selective incentives can all be con-
ceived as entailing a choice among alterna-
tive strategies, where a strategy is defined as
a rule specifying what choices to make in
each possible situation. In a system based on
voluntary cooperation, actors choose be-
tween two alternative strategies. If they co-
operate, their strategy is called private coop-
eration (CD), because they contribute at the
first level by contributing to the collective
good but defect at the second level by forgo-
ing any attempts to influence others. Alter-
natively, if they defect, their strategy is called
full defection (DD), because they defect at
both levels by refusing to contribute and per-
mitting others to do as they wish.

When collective action is organized
through strategic interaction, some actors
make their choices conditional on others’
choices. The standard strategy that embodies
this approach is Tit-for-Tat (TFT), in which
an actor begins by cooperating and subse-
quently behaves according to principles of
reciprocity by answering cooperation with

cooperation and defection with defection.
Here, the threat to withhold cooperation
serves as an incentive to motivate others to
cooperate.

When collective action is organized
through selective incentives, four additional
strategies become possible. Two of these
strategies use selective incentives to mandate
participation in collective action. Full coop-
eration (CC) involves contributing to collec-
tive goods production (first-level coopera-
tion) and sanctioning those who fail to con-
tribute (second-level cooperation). In the
terms of evolutionary game theory, full co-
operation combines two traits: It is “moralis-
tic” (Boyd and Richerson 1992:173), in that
it acts to control other players, and it is
“nice” (Axelrod 1984), in that it initially co-
operates. Yet many moralists are not nice, as
evidenced by the frequency of complaints
about hypocrisy among public officials. It is
easier to tell others how to behave properly
than to do so oneself. Thus, hypocritical co-
operation (DC) means an actor defects at the
first level but cooperates at the second level,
failing to contribute to the collective good
while acting to compel others to contribute.
Two final strategies embody counter-
mobilization, that is, opposition to the cre-
ation of a system of selective incentives.
Compliant opposition (CO) means cooperat-
ing at the first level but exercising opposi-
tional control at the second level—the actor
contributes to the collective good but defends
the rights of others to refuse to contribute.
Finally, full opposition (DO) means refusing
to contribute and opposing norms that would
compel compliance.

The Setting of Collective Action:
The First-Level Game

The structure of the setting in which collec-
tive action occurs depends on the first-level
game (i.e., the level of collective goods pro-
duction), because this defines the link be-
tween individuals’ choices of whether to con-
tribute to collective goods production and the
ultimate level of collective good produced.
This link is defined by the collective good’s
production function. Consistent with other
models (Marwell and Oliver 1993:77), I as-
sume that the level of collective goods pro-
duction in cooperative systems is a mono-



THE DYNAMICS AND DILEMMAS OF COLLECTIVE ACTION

255

tonically increasing function of the propor-
tion of actors who contribute to production
(i.e., each contributing actor makes some
nonzero contribution to production).

The standard production function is an S-
shaped curve. Because of this complexity, 1
follow Oliver et al. (1985) and Heckathorn
(1989) in analyzing the accelerating, linear,
and decelerating portions of the production
functions.

To represent segments of the production
function, I employ a function, previously
proposed for this purpose (Heckathorn
1989), in which D is the number of actors in
the group who defect (i.e., who fail to con-
tribute to production of collective goods), N
is the number of actors in the group, F is an
exponent controlling the shape of the produc-
tion function, and L is the level of collective
goods produced:

L=1-(DIN)F. 2)

As defined, the level of collective goods pro-
duced can vary from L = 0, or no production,
to L = 1, indicating full production. When all
actors defect (i.e., D = N), no collective good
is produced, and L = 0. When all actors con-
tribute (i.e., D = 0), the collective good is
fully produced and L = 1. When intermediate
numbers of actors contribute (i.e., 0 < D < N),
the link between the proportion contributing
and the level of collective goods produced
depends on the value of the-exponent, F.
Figure 1B presents the relationship be-
tween the proportion of the group that con-
tributes (N — D)/N) and the level of produc-
tion of the collective good (L) for various
values of F, the term that controls the shape
of the production function. When F = 1, the
production function is linear—contributions
from any given proportion of the group pro-
duce that proportion of the collective good.
When F > 1, the production function is de-
celerating (i.e., the slope of the production
function is a decreasing function of the num-
ber of contributors, N — D). Thus, the first
contributors are the most productive, while
subsequent contributors face decreasing mar-
ginal returns. For example, when F = 2 and
10 percent of the group contributes, they pro-
duce at the 19 percent level. In contrast, the
last 10 percent contributing add only 1 per-
cent to the level of collective goods produc-
tion, so their incentive to contribute is

weaker, as is the incentive of others to com-
pel them to cooperate. Consequently, the in-
centive to initiate collective action is com-
paratively strong, while the incentive to com-
pel 100 percent cooperation is rather weak.
This pattern is more pronounced in more
sharply decelerating production functions
(e.g., when F=10, the first 10 percent pro-
duce 65 percent of the collective good,
whereas the last 10 percent produce only
.00000001 percent).

When F < 1, the production function is
accelerating. When F = .5, the first 10 per-
cent contributing produce only 5.1 percent
of the collective good, while the last 10 per-
cent contributing produce 32 percent. In a
more sharply accelerating function, F = .1,
the first 10 percent contributing produce
only 1 percent of the collective good, while
the final 10 percent produce 79 percent.
Thus, a sharply accelerating production
function requires near universal contribution
to produce meaningful amounts of the col-
lective good.

As is customary in much of the evolution-
ary game literature (Axelrod 1984; Hirsh-
leifer and Martinez Coll 1988), actors are as-
sumed to interact sequentially in pair-wise
fashion.! Therefore, only three levels of col-
lective good production are possible. If nei-
ther actor defects, the production level is L =
1 — (0/2)F = 1; if only one defects, the pro-
duction level is L = | — (1/2)F =1 — 5F; if
both defect the level of productionis L = | —
22)F = 0.

Based on the above production function,
Table | shows the structure of the first-level
collective-action game. Each player chooses
between the two first-level strategies, private
cooperation (CD), or full defection (DD). In

!'That actors interact in pair-wise fashion is a
restrictive assumption that will be removed in a
subsequent paper. This extension of the model is
straightforward because the seven strategies ana-
lyzed here can be validly extended to an N-per-
son setting. For example, Boyd and Richerson
(1985) use an N-person generalization of the tit-
for-tat strategy in which the actor cooperates ini-
tially, and then cooperates if a threshold propor-
tion of actors have cooperated during the previ-
ous period. Similarly, the other six strategies have
been analyzed in N-person settings by Hecka-
thorn (1993) using a forward-looking decision
model.
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the upper left cell, where both players con-
tribute, the collective good is fully produced
(L = 1). Each player receives the collective
good’s full value, V, but the payoff is reduced
by the cost of that contribution K., so the
net payoff is

R=V-K,. 3)

In deference to the Prisoner’s Dilemma, this
outcome is termed R for reward, although
this term is not descriptive of all collective-
good systems. In the upper right cell, row
contributes while column defects, so row’s
“sucker” payoff, S, is

S=vV({1-5H-K, 4

This reflects the lower level of collective
goods production resulting from one-half of
the group’s defection (L = [1 — .5%]), and
row’s absorption of the contribution cost,
K.i. In the lower left cell, row defects while
column contributes, so row’s “temptation”
payoff, T, is

T=V(l-.55. (5)

This reflects the lower level of collective
goods production when only one player con-
tributes, and row incurs no contribution cost.
Finally, in the lower right cell, both players
defect, so no collective good is produced
(V * 0= 0) and no contribution costs are in-
curred. Thus, the net payoff from the “pun-
ishment” outcome, P, is

P=0. (6)

The first-level game defines a set of games
that depend on the value of two parameters
(Figure 2). The horizontal axis depicts pro-
duction functions that range from a sharply
accelerating function (F = .1) through a lin-
ear function (F = 1) to a sharply decelerating
function (F = 10). The vertical axis depicts
valuations of the collective good ranging
from the case in which the collective good
has little value (i.e., V/K, = .1, so the value
of full production of the collective good is
only one-tenth the cost of contributing to its
production), to cases in which the collective
good is highly valued (i.e., V/K, = 100).
Each point in the game-space depicted in
Figure 2 corresponds to a unique value of the
core game’s payoffs 7, R, P, and S. The solid
lines show where two payoffs are equal.
Therefore, within each of the five areas bor-

Table 1. Payoff Matrix for the First-Level Game

CD DD
CD R=V-K, S=Vv(-.5-K,
DD T=V(-.59 P=0

Note: The term in each cell is the row strategy’s
payoff. CD indicates cooperate at the first level and
defect at the second level (i.e., contribute to the pub-
lic good but exercise no normative control); DD in-
dicates defect at first level and second level (i.e., no
contribution to public good and exercise no norma-
tive control). R is the “reward” payoff, S is the
“sucker” payoff, T is the temptation payoff, and P is
the “punishment” payoff.

dered by the lines, the order of the core
game’s payoffs is different. Because this or-
der determines the structure of individual and
collective interests, each order corresponds
to a different type of game. These five games
are theoretically exhaustive of those that can
arise in collective-action systems as defined
in equations I through 6. This is a small sub-
set of all possible 2 x 2 games. There are 732
strategically distinct 2 X 2 games (Rapoport,
Guyer, and Gordon 1976:31), of which 654
are “degenerate” in that some payoffs are
equal. A taxonomy exists only for the 78
ordinally distinct games, that is, games in
which all payoffs differ. In Rapoport et al.’s
taxonomy, the five games depicted in Figure
2 correspond to numbers 6, 9, 12, 61, and 66.
Table 2 presents the payoff matrices for the
five games.

The Prisoner’s Dilemma (#12). Consistent
with its special place in the analysis of col-
lective action, the Prisoner’s Dilemma occu-
pies the central region of the game-space dia-
gram. It is named for a vignette in which two
criminal suspects are questioned separately
about a crime. Their interests derive from the
preference order of the core game’s payoffs.
The preferred outcome is unilateral defection
(“temptation,” T), in which one benefits from
confessing when the other remains quiet;
then comes universal cooperation (the “re-
ward,” R) in which both remain quiet and re-
ceive light sentences; next comes universal
defection (“punishment,” P) in which both
confess and are severely punished; and the
worst is unilateral cooperation (“sucker,” S),
in which only the other confesses so one’s
own penalty is most harsh. The essential
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Figure 2. Game-Space Diagram Showing the Family of Games Generated by the Relationship between
the Shape of the Production Function (F) and the Relative Value of the Public Good (V/IK,1).

problem is one of trust. If the prisoners can
trust one another to act on their common in-
terest in remaining quiet, they can escape
with a light sentence. This game has become
the paradigm for cases in which individually
rational actions lead to a collectively irratio-
nal outcome. A vast amount of research on
the Prisoner’s Dilemma has focused on a
single game described by the parameters T =
5,R=3,P=1,5=0 (Axelrod 1984; Hirsh-
leifer and Martinez Coll 1988). This corre-
sponds to a game with a modestly valued
collective good (V/K,| = 1.4), and a modestly
decelerating production function (F = In(3/
T)/In(1/2) = 1.222). The location of this game
in Figure 2 is indicated by an “X” in the
Prisoner’s Dilemma region.

A collective-action system corresponds to
a PD game if universal cooperation is pre-
ferred to universal defection (e.g., a united
labor union would succeed in gaining valu-
able concessions from management), yet the
preferred outcome is unilateral defection
(e.g., to strike is costly and bargaining re-
mains effective with one less striker).
Whereas in Olson’s (1965) analysis the PD
fits most collective-action systems, Klander-

mans (1988:85), in a study of union action,
found that only 8 percent of respondents be-
lieved that a strike would be effective and
considered their own participation to be su-
perfluous. Most of these workers said they
would not take part in a strike.

The PD region has two parts, labeled PD
for the (true) “Prisoner’s Dilemma’” and OPD
for the “Ordinal Prisoner’s Dilemma.” In the
OPD, a defining characteristic of the PD is
lacking. Though the order of payoffs is cor-
rect, players prefer alternating between uni-
lateral defection and unilateral cooperation
(i.e., a mixture of T and S) to mutual coop-
eration (R), so (T + S)/2 > R.

Figure 2 indicates that there is an upper
limit of F beyond which a collective goods
problem is no longer a true PD. This can be
stated as follows:?

2The maximum value for F in a true PD occurs
at the point where the line separating the PD re-
gion from the chicken region (mathematically,
this is the line defined by S = P) intersects the
line separating the PD region from the OPD re-
gion (mathematically, this is the line defined by
R = [T + S]/2). Therefore, the maximum value of
F can be found by solving for F at this intersec-
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Theorem 1: If any collective good’s produc-
tion function in a dyadic game is more
than moderately decelerating (i.e., if F
> In(1/3)/In(1/2) = 1.58), the system is
not a true PD.

Another restriction is that if the relative
value of the collective good exceeds or falls
below a critical amount, the game cannot be
a PD. This leads to a second theorem:?

Theorem 2: If the relative value of the col-
lective good exceeds 2 (i.e., if V/K . >2),
or is less than 1 (i.e., if V/IK. < 1), the
system is not a PD.

The collective good must be more valuable
than its production cost, but its value cannot
be more than double the production cost.
These theorems place stringent bounds on
the range of collective goods problems that
correspond to PDs.

The chicken game (#66). A PD game is
transformed into a game of chicken when the
production function becomes more sharply
decelerating (i.e., when F increases). In this
game, the order of the two least valued pay-
offs is reversed from that in the PD (i.e., the
new order is T > R > S > P; see Table 2).
This reversal of preferences occurs because
as the production function becomes more
sharply decelerating, an additional coopera-
tor produces an ever larger proportion of the
collective good. The effect is to increase the
relative value of the outcomes in which co-
operation is partial, T and S. When the value
of S increases until it exceeds the value of P,
a PD is transformed into a chicken game.

tion, that is, by solving for F on the assumption
that S = P and R = (T + S)/2. First, substitute the
former expression into the latter, yielding R = (T
+ P)/2. Using the payoff equations in Table 1,
this expands to V - K = (V * (1 - .5F) + 0)/2.
With a bit of manipulation, this simplifies to
1/(1-.5F) = 1/(2 .57). Finally, solving for F yields
F = In(1/3)/In(1/2) = 1.58496250. This conclu-
sion is derived for a dyadic group. In larger
groups, more sharply decelerating production
curves are compatible with the PD. For example,
in groups larger than 15, F can exceed 10.

3 The maximum net value of the collective
good (V/K,)) in a true PD can be computed by
solving for the net value at the intersection of the
line separating the PD region from the assurance
game region (the R = T line), and the line sepa-
rating the PD region from the chicken game re-

Table 2. Payoff Matrices for Five Ordinally Dis-
tinct Games

Strategy

Game and Strategy CD

Prisoner’s Dilemma
CD
DD

Chicken Game
CD
DD

Assurance Game
CD
DD

Privileged Game
CD
DD

Altruist’s Dilemma
CD I
DD 5,
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This game is named for a contest in which
teenage drivers test their courage by driving
straight at one another. Each player chooses
between two strategies: chicken (swerve to
avoid a collision) or daredevil (do not
swerve). Thus, the order of preferences is
temptation (7), the other swerves; then re-
ward (R), both swerve; then sucker (S), ego
swerves; and the worst of all, punishment
(P), a head-on collision. The essential prob-
lem in a chicken game is bargaining. Players
have a common interest in avoiding conflict
but have opposed interests regarding the
terms of agreement, such as the allocation of
courage, honor, or profit. This game fits sys-
tems in which a common interest in collec-
tive action coexists with opposed preferences
regarding the precise direction that action

gion (the S = P line), that is, solving for VIK,, on
the assumption that S = P and R = T. One way to
do this is to solve first for V/K | assuming that
S = P. This yields V/K. = 1/(1-.5F). Second.,
solve for V/K,, assuming R = T. This yields V/K,
= 1/.5F. Third, solve for F using the above two
equations, 1/(1-.5F) = 1/.5F so, F = .5. Finally,
substitute F = .5 into the initial equation to yield
VIK,, =2.

As was the case for Theorem 1, constraints on
the PD are less stringent in larger groups. The
lower bound is defined by the line separating the
PD region from the altruist’s dilemma region (the
VIK,, =1 line).
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should take. Examples include the hawk/
dove split that arises in many social move-
ments, as when purists claim that pragmatists
are selling out by forsaking the movement’s
essential goals, and pragmatists claim that
purists’ unwillingness to compromise will
lead the movement into ruin. Resolutions of
the chicken game bargaining problem that
are grounded in game theory include resis-
tance theory (Heckathorn 1980) and Rubin-
stein’s (1982) model.

The assurance game (#61). An exactly op-
posite dynamic transforms a PD into an as-
surance game. When the production function
for the collective good becomes more
sharply accelerated (i.e., F becomes smaller),
the order of the two most highly valued out-
comes is the reverse from their positions in
the PD, so that the new orderis R >T > P >
S (Table 2). The effect is to reduce the rela-
tive value of the partial-cooperation out-
comes, so T and S decline in value. When T
falls below R, the PD becomes an assurance
game.

The assurance game derives its name from
the fact that each player can be motivated to
cooperate by the mere assurance that the
other will do the same. A collective-action
system is an assurance game if participation
with others is highly valued, there is consen-
sus on the direction of collective action, and
the only uncertainty is that individuals do not
want to participate unless others will do the
same. This fits Klandermans’s (1988) analy-
sis of union participants: “If most members
believe that only few people will participate,
it becomes a self-fulfilling prophecy” (p. 90)
that produces a downward spiral of partici-
pation. Alternatively, in these systems greater
participation is self-reinforcing. Hence, the
essential problem is one of coordination.

The privileged game (#6). PDs can be
transformed into other types of games by
changing the relative valuation of the collec-
tive good, V/K., (Figure 2). If the value of
the collective good is increased sufficiently,
the result is a game sometimes labeled
“spite”” because it lacks conflict unless play-
ers are so competitive that they seek to mini-
mize the other’s payoff. When compared to
the PD, the two most valued payoffs are re-
versed, as in the assurance game (Table 2).
The two least valued payoffs are also re-
versed, as in the chicken game, so the order

of payoffs is R> T > S > P. As the collective
good increases in value (or, equivalently,
when contribution becomes less costly), a
point occurs where the incentive to defect
disappears because the net loss in the value
of the collective good produced after defect-
ing would exceed the costs of contribution.
This is the point at which Olson (1965) de-
scribed a group as “privileged.” Therefore, I
call this the privileged game. Because indi-
vidual and collective rationality coincide per-
fectly, there is no social dilemma. Hence a
definitional issue arises: If collective goods
provision is defined as inherently problem-
atic, no collective good exists in this system.
However, by the standard definition of col-
lective goods as entailing both jointness and
nonexcludability, the conclusion is that di-
lemmas are not inherent in all collective
goods provision.

The altruist’s dilemma game (#9). If the
relative value of the collective good in a PD
game is reduced sufficiently, it is eventually
transformed into an altruist’s dilemma game
(Heckathorn 1991) (Figure 2). In this game,
the order of the two middle payoffs is re-
versed from their positions in the PD so that
T > P >R > S (Table 2). This reversal occurs
because the incentive to defect increases as
the collective good loses value. When the
collective good’s value is less than the con-
tribution cost (i.e., when V/K_| < 1), univer-
sal defection (P) becomes preferable to uni-
versal cooperation (R). At that point, the PD
becomes an altruist’s dilemma.

The altruist’s dilemma game has a unique
characteristic. Played egoistically, there is no
dilemma because everyone defects, which is
both individually and collectively rational.
However, if players are altruistic, they coop-
erate because that is what the other prefers
they do. Thus, altruistic players fare poorly
when compared to defectors, hence the name
“altruist’s dilemma.” An example arose this
winter in the holiday gift exchange system in
one branch of my extended family. Senior
relatives concluded that too much money was
being spent on gifts among adults. Therefore,
names were thrown in a hat and each adult
drew the name of the recipient of the gift he
or she would buy at year’s end. The idea was
that less would be spent on single gifts than
on a myriad of gifts. More generally, the
altruist’s dilemma fits cases in which the cost



260

AMERICAN SOCIOLOGICAL REVIEW

of providing a public good exceeds its ben-
efits, so its production is collectively irratio-
nal. Examples include spending “too much”
on highways, environmental protection,
crime control, or other public goods. Here
the problem is exactly opposite that of the
PD. In an altruist’s dilemma, it is not too
little social cooperation that creates a prob-
lem, but rather too much. This problem can
arise not only among altruists, but also when
selective incentives are employed to organize
collective action, because actors can then
compel one another to act altruistically
(Heckathorn 1991).

These five games are theoretically exhaus-
tive. Theorem 3 states:*

Theorem 3: Only five ordinally distinct
games arise in collective-action systems:
the Prisoner’s Dilemma, the chicken
game, the assurance game, the altruist’s
dilemma, and the privileged game.

41 assume that parameter values are constrain-
ed as follows: V> 0, so the collective good is val-
ued; K| > 0, so contribution entails a cost; and F
> 0, so the level of collective good produced is a
monotonically increasing function of the number
of contributors. These assumptions and equations
3 through 6 suffice to generate three inequalities.
First, T > S, because T — S equals K., when T — S
is expanded using equations 4 and 5 and then sim-
plified; K., is positive by assumption. Second, T
> P, because T — P reduces to V (1 — .5F); V is
positive by assumption, and (1 — .5F) is positive
because F is positive by assumption. Because the
product of two positive numbers is itself positive,
V (1 - .5%) is necessarily positive. Third, R > S,
because R — S reduces to V * (.5F), and both V
and .57 are positive. Based on the first two in-
equalities (7 > S and T > P) and the assumption
that all outcomes are differentially valued, it must
be the case that either T>S>P,orT>P > S.

Assume now that the first case is true, so 7> §
> P. If 5o, only two values of the remaining term,
R, are consistent with the third inequality, R > S.
These are R > T > S > P (the privileged game)
and T > R > S > P (the chicken game). Now as-
sume that the second case is true, so 7> P > S. If
so, only three values of the R term are consistent
with the third inequality, R > S. These are R> T >
P > S (the assurance game), T > R > P > § (the
Prisoner’s Dilemma), and T > P > R > S (the
altruist’s dilemma). This completes the demon-
stration of Theorem 3. »

Theorem 3 is unaffected by group size because
the three inequalities on which it is based are un-

This proof is highly general, in that the as-
sumptions on which it is based, as formal-
ized in equations 1 through 6, are intended
to capture the essential features of collective
action.

The analysis of collective action should be
free from the Prisoner’s Dilemma paradigm.
Analysis of the PD persists despite criticism
(Mueller 1989:15-17) because the other
types of games that arise in collective goods
contexts have not been exhaustively speci-
fied. In addition to the trust problem arising
in the PD, collective action also confronts the
bargaining problem of the chicken game, the
coordination problem of the assurance game,
the overcooperation problem of the altruist’s
dilemma, and the absence of a problem in the
privileged game. Hence, studies of collective
action should explore the full range of pos-
sible games.

A DYNAMIC FORMAL MODEL

Most formal analyses of collective action
have employed rational-choice models in
which decision-making is forward-looking
(Olson 1965; Marwell and Oliver 1993).
That is, actors formulate expectations about
the future payoffs associated with each alter-
native course of action. In simple rational-
maximizing models, actors choose the alter-
native promising the highest payoff. In more
complex models, satisficing or framing may

affected by group size. Furthermore, even if some
other limiting assumptions are modified, the theo-
rem is essentially unchanged. For example, if the
assumption that contributing to collective action
is costly is removed to permit the case in which it
is costly not to contribute (K, < 0), a sixth type
of game becomes possible: R > S > T > P. How-
ever, from a strategic standpoint, this game is es-
sentially identical to the privileged game. (The
case in which K| = 0 is excluded, because if that
were the case 7 would equal S, and the game
would not be ordinally distinct.)

Similarly, if V<0 is permitted so that the pub-
lic.“good” is negatively valued, a seventh game
is added: P > T > S > R. This is a conflict-free
game with universal defection as the strongly
stable equilibrium and remains so even when it is
played altruistically. Hence, this game provides a
plausible lower bound for the altruist’s dilemma
zone, for even altruists will not incur costs to pro-
duce a product that they and others do not value.
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affect decisions, but behavior remains for-
ward-looking because expectations about fu-
ture events govern choices in the present.

In contrast, experiential learning models
are backward-looking (Cross 1983; Macy
1990). They place weaker demands on the
calculating capacities of actors and rely in-
stead on memory. For example, in Bush-
Mosteller (1964) learning models, actors be-
gin by behaving randomly. They then adjust
the relative probabilities of choosing each
strategy based on the rewards each strategy
has produced in the past. Thus, the actor’s
behavior is purposive and adaptive in that
actions that have led to rewards in the past
are more likely to be repeated, while actions
that have led to losses are progressively
abandoned. The resulting behavior may be
difficult to distinguish from rational optimiz-
ing. For example, Cross (1983) showed that
if the rate of learning is greater than the rate
of environmental change, adaptive learning
produces patterns of behavior that can al-
ways be described as though actors were
maximizing expected utility. Similarly, Macy
(1990, 1993) used a backward-looking deci-
sion model to replicate and extend results
from forward-looking models of collective
action.

Selectionist or, equivalently, evolutionary
game models provide a third type of decision
model in which actors adopting a range of
strategies interact with. one another
(Hirshleifer 1982; Maynard Smith 1982;
Axelrod 1984). Based on the resulting pay-
offs, the actors with the most successful
strategies proliferate at the expense of the
less successful. This process is then repeated,
generation after generation, until the system
either approaches stable equilibrium or cy-
clical variation. Biologists employ these ap-
proaches to model evolutionary selection.
However, the selection process has also been
interpreted as reflecting a process of obser-
vational learning in which actors compare
their own outcomes to those of their peers,
imitating peers who do best (Brown,
Sanderson, and Michod 1982; Boyd and
Richerson 1985). In essence, actors look
around to see who is doing well and take as
role models those who appear most success-
ful. When interpreted in this manner, these
models can be termed sideways-looking
models of behavior.

Backward-looking and sideways-looking
models are similar structurally in that both
assume an adaptive learning process by
which more successful strategies proliferate
at the expense of less successful strategies.
The difference is that in backward-looking
models, competition among strategies occurs
within each actor, while in sideways-looking
models, competition occurs among actors.
Sideways-looking models have a potential
advantage over forward-looking and back-
ward-looking models in that actors can ben-
efit from any single actor’s discovery.

Adaptive learning models may seem more
realistic than forward-looking models be-
cause they do not require that actors have
highly developed calculating capacities.
However, learning models also have strin-
gent requirements. For example, a sideways-
looking model requires that actors compare
their own level of success to those of other
actors. Therefore, they must observe the ac-
tions of all others and the rewards they all
receive—a difficult task in all but the small-
est systems. Similarly, a backward-looking
model requires that actors compare the suc-
cess of their most recent actions to that of
previous actions, so they must retain a
record of innumerable past actions. There-
fore, demands on memory are extensive.
Thus, all three models place demands that
can appear implausible in some situations.
This occurs because purposive action re-
quires information, and information is not
always easily acquired.

A realistic model of social actors would no
doubt synthesize forward-looking, back-
ward-looking, and sideways-looking models
of decision-making because everyone formu-
lates expectations about the future, learns
from his or her own experiences, and benefits
from the experiences of others. Such a model
might be based on the assumption that indi-
viduals choose among alternative mecha-
nisms depending on the relative credibility
and cost of the information required by each
mechanism. However, considering such a
model would exceed the scope of this paper.
Instead, I employ a sideways-looking model
for several reasons. First, it provides the op-
portunity to assess the robustness of conclu-
sions about collective action that were de-
rived using forward-looking and backward-
looking models. Second, a sideways-looking
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Table 3. Payoff Matrix for Seven Strategies

Private Full Tit- Full Hypocritical Compliant Full
Cooperation Defection for-Tat  Cooperation Cooperation Opposition  Opposition
Strategy (CD) (DD) (TFT) (CC) (DC) (CO) (DO)
CD R s R R S R S
DD T P P E, R E., S+(1-E) P T P
+(1-E) T
TFT R-K,. P-K, R-K,. R-K,, E,S R-K,, P-K,.
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Note: The term in each cell is the row strategy’s payoff. Shaded area indicates core game and outcomes.

model introduces a new and potentially pow-
erful tool for the analysis of collective action.
Finally, it provides the opportunity to link
two previously isolated fields—evolutionary
game theory and collective action.

I draw on Hirshleifer and Martinez Coll’s
(1988) procedure for modeling evolutionary
games because it is mathematically more el-
egant and less demanding computationally
than competing approaches, yet it produces
generally equivalent results. This procedure
assumes that players with conditional strate-
gies respond immediately to the strategies of
others. In essence, it avoids the unnecessary
steps involved in recomputing the expected
payoff each time two equivalent strategies
interact. Therefore, using only a single play,
this approach mimics the effects of many
plays.

The first step in constructing such a model
is to generate a matrix that indicates the pay-
off each strategy is awarded when it plays
each strategy, including itself. Table 1 (p.
256) depicts a payoff matrix for the core
game. This matrix must now be expanded to
include all seven strategies to be modeled.

Expanding the Core Payoff Matrix: Tit-
for-Tat and Second-Level Strategies

Table 3 presents an “expanded” payoff ma-
trix. Like Table 1, each cell represents the
row player’s payoff when encountering the
column player. The payoff matrix for the
core game’s two strategies (shaded) occupy
the first two rows and columns. The five ad-
ditional strategies produce a 7 X 7 matrix: tit-
for-tat (TFT) and the four strategies that em-
ploy selective incentives. Consider TFT. The
payoffs awarded to TFT from encounters
with the core strategies are computed as fol-
lows: When TFT encounters CD, the private
cooperation strategy, each contributes, so
TFT receives a payoff of R — K, (i.e., the
reward payoff less TFT’s information cost
and CD’s payoff is R). Similarly, when TFT
encounters DD, the full defection strategy,
the equilibrium outcome is for neither to
contribute, so TFT’s payoff is P — K., and
DD’s payoff is P. Finally, when TFT encoun-
ters itself, each contributes and incurs costs
of K,,, so the payoff is R — K,.. Up to this
point, the construction of the expanded ma-
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trix has followed Hirshleifer and Martinez
Coll (1988) except that they use numbers
drawn from a particular numerical example
instead of locating equations in the cells.

The CC and DC strategies in the matrix
employ selective incentives to change the
partner’s behavior. In full cooperation, CC,
the player cooperates at the first and second
levels by contributing to the collective good
and exercising compliant control; in hypo-
critical cooperation, DC, the player defects
at the first level and cooperates at the second
level by not contributing while exercising
compliant control to compel others to con-
tribute. Two parameters define compliant
control. First, compliant control has a cost,
K.,, the cost of cooperation at the second
level. This cost is deducted from the payoffs
shown in rows for CC and DC of the matrix.
I assume this cost can vary from O to any
positive number. Second, compliant control
is not ““cheap talk.” It has a direct effect on
others’ behavior to a degree determined by
its efficacy, E .,—the efficacy of cooperation
at level two. In essence, this is the power of
the actor to alter the behavior of the target.
In this model, I assume that control is exer-
cised through constraining the partner’s op-
portunity to act. (For a discussion of the as-
sumptions about interpersonal control under-
lying this model, see Heckathorn 1990:369.)
The effect is to truncate the game matrix so
that the target of control faces fewer choices.
The efficacy of compliant control is defined
formally as the proportional reduction in the
opportunities of the target of control to de-
fect, so E., can vary from O (no power) to 1
(complete power). For example, an actor’s
efficacy of compliant control of E_, = .75 re-
duces others’ opportunities to free-ride by 75
percent (e.g., an actor who had chosen to not
contribute would now have only a 1 — .75 =
25 percent opportunity not to contribute).
More generally, when the target of control
has chosen not to contribute, the exercise of
compliant control imposes a mixed strategy
on the actor, so the target has an E_, prob-
ability of contributing and a 1 — E, probabil-
ity of not contributing.

The payoffs associated with the full coop-
eration strategy (CC) reflect these two pa-
rameters. When CC encounters CD, both co-
operate and thereby earn R, but CC’s payoff
is reduced by K_,. When CC encounters DD,

the situation is more complex. Because DD
chooses to not contribute, two outcomes are
possible. There is an E,, probability that
CC’s compliant control is successful, in
which case CC is awarded a payoff of
R - K, and DD is awarded R. There is a
1 — E, probability that CC’s compliant con-
trol fails, in which case CC is awarded a pay-
off of S — K.,, and DD earns 7. The payoffs
shown in Table 3 reflect these two possible
outcomes weighted by their probabilities
(i.e., the expected utility of CC when en-
countering DD is E, R + [1 — E.»] S — K,
and the expected utility of DD is E,, R +
[1 — E.] T). The other payoffs to the CC
strategy are computed in like fashion.

The hypocritical cooperation strategy (DC)
is identical to the CC strategy except that the
player does not contribute. A particularly
complex outcome arises when two hypocriti-
cal cooperators meet because each chooses
to not contribute, while seeking to compel
the other to contribute. Therefore, four out-
comes are possible. If the compliant control
of both the actor and the target succeed, both
contribute and the outcome is R. The prob-
ability of this occurring is E,?, so the ex-
pected utility of this prospect is R * (E?2).
Second, if the compliant control of both fails,
neither contributes and the outcome is P. The
probability of this occurring is (1-E,)>.
Third, if the actor’s control succeeds but the
target’s control fails, the outcome for the ac-
tor is 7. The probability of this occurring is
E. (1 — E,). Finally, if the actor’s control
fails while the target’s control succeeds, the
actor’s outcome is S. This also has a prob-
ability of E., (1 — E.,). When the expected
utilities of each of the four possible out-
comes are summed and the costs of exercis-
ing compliant control are deducted, the re-
sultis E)2R+(1 —=E,)?P+E, (1 -E,) S
+Eq (1 -En) T-Ke.

The payoffs associated with oppositional
control (the CO and DO rows) reflect both
the cost of exercising that control, K, (the
cost of opposition at level two) and the effi-
cacy of oppositional control, E ,. The effi-
cacy of oppositional control is defined as
the proportional reduction in the efficacy of
compliant control produced by the exercise
of oppositional control (Heckathorn 1990).
As defined, it can vary from 0 (no effect) to
1 (in which it neutralizes totally the effect
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of compliant control). For example, if the
target actor is exercising compliant control
with efficacy E,, = .8, and the efficacy of
oppositional control is E,, = .75, the net ef-
ficacy of the target’s compliant control is re-
duced from 8 to E,, (1 — E,) = .8 * (1 —
75)=.2.

The compliant opposition strategy is less
interesting because it is strictly dominated by
the full opposition strategy in the class of
games examined here. The compliant oppo-
sition strategy is included in this analysis
only for purposes of logical completeness.

Modeling Evolutionary Change

Consider now how the population of strate-
gies may change. Every evolutionary process
begins with an initial population distribution
of strategies. Each strategy i represents a spe-
cific proportion of the total population, p,.
Depending on the strategy’s payoff relative
to other strategies, its prevalence in the popu-
lation changes by the amount Ap;, so the new
population proportion is p; + Ap;. Following
Hirshleifer and Martinez Coll (1988), this
term may be defined as

Api=Zp; (Y;- M), @)

where Z is a sensitivity parameter (a constant
representing the speed with which population
distributions change in response to different
payoffs), Y; is strategy i’s payoff from play-
ing each strategy in the system, including it-
self, weighted by the prevalence of each
strategy. Hence, the strategy’s average pay-
off during the current generation is

N
r= ®)
2

where p; is the proportion strategy j in the
population, Uj; is strategy i’s utility from
playing strategy j, and N is the number of
strategies. Finally, the mean payoff for all
strategies is

N
M=§m%- )
pa

In this model, strategies change in prevalence
over generations depending on their payoffs
relative to other strategies in the populations.
A strategy becomes more prevalent if it earns
a payoff greater than the mean (i.e., if ¥; >
M), and declines if it earns less than the aver-

age. The magnitude by which the strategy’s
prevalence expands or declines depends both
on its current prevalence in the population,
pi» and on the “sensitivity” parameter Z.

DYNAMICS OF COLLECTIVE
ACTION

I now apply the formal model to analyze the
evolution of collective action in systems with
production functions that range from sharply
decelerating to sharply accelerating, and col-
lective goods that vary from extraordinarily
valuable to virtually worthless. Analysis be-
gins with the theoretically simplest case in
which collective action is organized only
through voluntary cooperation.

Voluntary Cooperation

Marwell and Oliver (1993) assume that col-
lective action is organized solely through vol-
untary cooperation. In terms of the above
strategies, this means that individuals have
only two options—private cooperation or full
defection. Figure 3A shows what happens
when these two strategies compete in the
standard Prisoner’s Dilemma. The horizontal
axis shows the number of generations during
which the system has evolved, and the verti-
cal axis represents the proportional distribu-
tion of strategies. At the beginning, the two
strategies are equally prevalent (.5). This pro-
duces slightly more than 50 percent produc-
tion of the collective good (indicated by the
bold line), because of the gently decelerating
production function assumed in the standard
PD game. As evolution proceeds, consistent
with expectation full defection quickly drives
private cooperation into extinction. Conse-
quently, by the 500th generation, the level of
collective goods production has declined to
0. This explains why Marwell and Oliver do
not identify a free-rider problem in the PD
game—everyone defects, so no one can free-
ride on.the contributions of others. Thus, ex-
ploitation is avoided, but at the cost of leav-
ing the social dilemma unresolved.’

3 For a copy of a computer program that imple-
ments the model presented here and graphs the
results, send a blank disk along with a stamped,
self-addressed diskette mailer to the author. The
program requires an IBM-compatible computer
with VGA graphics.
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Voluntary cooperation produces different
results when the shape of the production
function is changed (Figure 3B). Here the
horizontal axis represents the shape of the
production function, F; the vertical axis
again represents the proportional distribution
of strategies, but the lines now depict the dis-
tribution of strategies after 20,000 genera-
tions. In terms of Figure 2, Figure 3B por-
trays systems lying on a horizontal line in-
tersecting the “X” that represents the stan-
dard PD. Figure 3B depicts several types of
games. When F is large (F > 1.9), the system
corresponds to a chicken game; when F is

small (F < .48), the system corresponds to
an assurance game; and when F is moderate
(.49 < F < 1.8) the system corresponds to a
PD like that portrayed in Figure 3A.

Private cooperation survives only in games
with strongly decelerating production func-
tions—the chicken games. Here the equilib-
rium outcome is a mixture of private coop-
eration and full defection strategies because
instabilities arise when either private coop-
eration or full defection becomes too numer-
ous. Consider again the vignette for which
this game is named. When most players are
“chickens” (private cooperators) who swerve
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to avoid a collision, the daring players who
never swerve (full defectors) can thrive by
intimidating the chickens. Therefore bold
players proliferate. Yet this expansion is lim-
ited because bold players do poorly when
confronting one another—they have head-on
collisions. Hence, in a population of chick-
ens, it is best to be daring; in a population of
daring people, it is best to be a chicken.
Thus, the equilibrium strategy in the chicken
game is a mix of both types of players.

This dynamic corresponds to the free-rider
problem described by Marwell and Oliver.
Their “order effects” occur when one player
makes a choice while observing another. For
example, if two players are racing toward a
confrontation and one sees the other surren-
der, there is no longer any pressure on. the
former to concede. Similarly, a chicken game
is characterized by what they term a “surplus”
because both players prefer swerving to a
head-on collision, but only one of them needs
to swerve to avoid the crash so there is a sur-
plus of potential swervers. Thus, Marwell and
Oliver are correct in associating surplus and
order effects with decelerating production
functions. However, the PD, the privileged
game, and the altruist’s dilemma can also
have decelerating production functions, for
these games also occur on the right half of
Figure 2. Thus, a decelerating production
function is a necessary but not a sufficient
condition for surplus and order effects.

Consider now the left half of Figure 3B.
Private cooperation fares poorly in these sys-
tems with accelerating production functions,
which correspond to assurance games, but
this is not invariably the case. Consistent
with Marwell and Oliver’s analysis of collec-
tive action in systems with accelerating pro-
duction functions, collective action faces a
start-up problem. For example, when F = .1,
private cooperation can win if its initial
prevalence is 75 percent or more, and when
F = .3, private cooperation can win if its
prevalence is 85 percent or more. Private co-
operation usually loses in this system only
because the initial prevalence of each strat-
egy is assumed to be 50 percent, which is
below these thresholds. Thus, Marwell and
Oliver are correct in associating the start-up
problem with an accelerating production
function. However, not all systems with ac-
celerating production functions are assurance

games. There are also PDs, altruist’s dilem-
mas, and privileged games on the left half of
Figure 2.

Figure 3C shows the effect of changing the
relative value of the collective good in the
standard PD game portrayed in Figure 3A’s.
The horizontal axis represents the net value
of the collective good, V/K_,; the vertical axis
again represents the proportional distribution
of strategies, and the lines depict the equilib-
rium distribution of strategies attained after
20,000 generations. In terms of Figure 2,
Figure 3C portrays the systems lying on a
vertical line intersecting the “x” that repre-
sents the standard PD. These systems encom-
pass several types of games. When the rela-
tive value of the collective good is low, the
system corresponds to an altruist’s dilemma
(VIK,; < 1). A slight increase produces an or-
dinal or true PD game (1 < V/K, < 1.7). A
further increase yields a chicken game (1.8 <
VIK.; < 2.3). Subsequent increases produce
a privileged game (V/IK,| = 2.4).

In Figure 3C’s system, full defection wins
in the altruist’s dilemma because, just as in
the PD, the payoffs from full defection
strictly dominate those from private coopera-
tion. Like Figure 3B, the outcome in the
chicken game is a mixture of private coop-
eration and full defection. Finally, private
cooperation wins in the privileged game be-
cause the payoffs from private cooperation
strictly dominate those from full defection,
so no social dilemma arises. Under this most
favorable of circumstances, collective action
emerges unburdened by free-riding. For ex-
ample, Oegema and Klandermans (1994)
analyzed a Dutch petition campaign against
cruise missiles. Organizers sent signature
cards to every postal address in the country
and volunteers went door to door to collect
them to ensure that signing the petition “re-
quired little or no effort.”” This reduced the
cost of participation and thereby augmented
the relative value of the movement’s public
good. *

Strategic Interaction and Norms
of Reciprocity

Early studies of the evolution of cooperation
suggested that strategic interaction as em-
bodied in the TFT strategy was extraordinar-
ily robust (Axelrod 1984). Axelrod drew his



THE DYNAMICS AND DILEMMAS OF COLLECTIVE ACTION

267

conclusions from two celebrated tourna-
ments in which TFT won against dozens of
other strategies suggested by prominent
game theorists. His analysis showed that
these victories depended on two conditions:
The prospects for future interaction must be
substantial, and cooperative strategies must
selectively interact with one another.

Figure 4A shows the effect of adding TFT
to Figure 3A’s two-strategy system. The re-
sults show that the TFT strategy can promote
collective action. After about 700 genera-
tions, a mixed-strategy equilibrium is at-
tained between TFT and private cooperation.
TFT does not win out fully because the pri-
vate cooperation strategy behaves, in es-
sence, as a second-order free-rider (Martinez
Coll and Hirshleifer 1991). That is, private
cooperation reaps the benefit of TFT’s sup-
pression of the full defection strategy with-
out bearing any of the potential costs.

TFT’s ability to promote social coopera-
tion is not limited to the PD. Figure 4B de-
picts the effect of altering the shape of the
production function shown in Figure 4A. The
effect can be seen by comparing Figure 3B,
in which TFT is absent, with Figure 4B in
which TFT is present. TFT has no effect in
the chicken games (F > 1.8), in which the
equilibrium mix of private cooperation and
full defection remains unchanged. However,
in the assurance games (in which F'is small),
and in the PD (in which F is moderate), a
mixture of TFT and private cooperation pro-
duces full production of the collective good
(ie.,, L=1).

Further effects of the introduction of TFT
are apparent when variations in the value of
the collective good are considered. Compare
Figures 4C and 3C. The introduction of TFT
has no effect in the altruist’s dilemma—full
defection dominates both TFT and private
cooperation. However, TFT excludes all ri-
vals in the PDs with the least-valued collec-
tive goods. In PDs with more highly valued
collective goods, the payoffs to strategies
that contribute to collective goods produc-
tion increase relative to the payoff to full
defection. That benefits both TFT and pri-
vate cooperation. This trend continues as the
collective good’s value increases and the
system is transformed first into the chicken
game (1.8 < V/K,, < 2.3), and finally into
the privileged game (V/K,.| > 2.4).

Recent studies emphasize the fragility of
TFT and associated reciprocity-based strate-
gies (Martinez Coll and Hirshleifer 1991).
One vulnerability concerns the effect of add-
ing a cost of complexity (K,.). Figure 4D
shows the effect of adding that cost to Fig-
ure 4A’s system—TFT dies out in about
2,000 generations. Consistent with Martinez
Coll and Hirshleifer (1991), private coopera-
tion serves as a second-order free-rider that
dooms TFT to extinction. Remarkably, this
phenomenon occurs however small the cost
of complexity, and not only in the PD but in
all other games as well.

Selective Incentives: Compliant Control

Recently, both evolutionary game models
and collective action models have been ex-
panded to include selective incentives. Evo-
lutionary game theorists sought strategies
more robust than TFT. For example, Boyd
and Richerson (1992) explore punishment-
based strategies. Consistent with the earlier
analysis of Hirshleifer and Rasmusen (1989),
they find that these strategies are so robust
that they allow the evolution not only of co-
operation, but of anything else—"moralistic
strategies can cause any individually costly
behavior to be evolutionarily stable, whether
or not it creates a group benefit” (Boyd and
Richerson 1992:173). Their analysis includes
a moralistic strategy termed ‘“cooperator-
punishers” in which the actor cooperates and
punishes all those who fail to cooperate. This
coincides with the “full-cooperation” (CC)
strategy of Heckathorn’s (1989) collective
action theory.

Figure SA shows the effects of introducing
the two strategies that embody compliant
control, full cooperation and hypocritical co-
operation, into the systems portrayed in Fig-
ure 4D. The effect is dramatic. Consistent
with earlier research employing forward-
looking models (Heckathorn 1990) and sto-
chastic-learning models (Macy 1993), hypo-
critical cooperation is extraordinarily robust.
In the standard game depicted in Figure S5A,
hypocritical cooperation drives all competi-
tors into extinction in about 1,000 genera-
tions. This outcome remains stable even if
the efficacy of control is reduced rather dra-
matically (to E,, = .15), or its cost is sub-
stantially increased (to K., = .5).
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cal Cooperation

The robustness of hypocritical cooperation
becomes further apparent when variations in
the shape of the production function are con-
sidered (Figure 5B). Hypocritical coopera-
tion fails to survive only in the “strong” as-
surance games (i.e., the games in which F' <
.28), where it loses out to private coopera-
tion. Moving from left to right in Figure 5B,
there then occurs a brief transition zone of
“moderate” assurance games (.28 < F < .4)
characterized by a mix of hypocritical coop-
eration, full cooperation, and full defection.
Finally, in the “weak” assurance games (F =
4 to .48) and in the subsequent PD and
chicken games, hypocritical cooperation ex-

tinguishes all competitors.

Some of the strengths and limitations of
hypocritical cooperation become apparent
when variations in the value of the collective
good are considered (Figure 5C). Hypocriti-
cal cooperation survives only when the col-
lective .good’s value is neither too high nor
too low. Consider first the altruist’s dilemma
games (V/K_.; < 1). Here it wins in all but the
most extreme dilemmas (V/K. < .31). The
result is an outcome termed “overcontrol”
(Heckathorn 1990); in which a collective
good is produced even though its value is
less than its contribution cost. Thus, the
group is worse off because of its production.



270

AMERICAN SOCIOLOGICAL REVIEW

e

Proportion of Population Playing Strategy

A S

Level of Public Good Produced (L)

b A

Full Defection (DD)

. = -

57 .
47 \ Full Cooperation (CC)
.37 A
S \ / Private Cooperation (CD)
N, Tit-for-Tat (TFT
P / (TFT)
0 T - 'Q.l‘u'" | T 1 t T ]
0 250 500 750 1000 1250 1500 1750

2000

Number of Generations
Note: F=1.22, V/Kei=1.4, Koc= Ke2 = .1, Eco = .8, Z= .05

o

©
1

CD —

Proportion of the Population Playing Strategy
[5,]

10
Shape of the Production Function, F(log)

1 10
Shape of the Production Function, F(log)

100

Figure 6. Proportion of the Population Playing Selected Strategies, by Number of Generations, Shape
of the Production Function, and Relative Value of the Public Good: The Effect of Full Coop-

eration

In Figure 5C, hypocritical cooperation also
dominates the PD games and the “weaker”
chicken games. In the “stronger” chicken
games, the outcome is a mix with full coop-
eration. Finally, in the privileged game,
hypocritical cooperation loses out to private
cooperation, as must any strategy that incurs
second-level costs such as TFT’s cost of
complexity or a normative strategy’s costs of
compliant control.

Although full cooperation is usually over-
whelmed by hypocritical cooperation, full
cooperation is quite robust in its own right
(Figure 6). It does well in competition with
the voluntary cooperation and strategic inter-

action strategies. Full cooperation thrives un-
der moderate circumstances, that is, when
the production function is neither sharply ac-
celerating nor decelerating and the value of
the collective good is moderate. Thus, it
functions like a more robust TFT. Moreover,
even under circumstances in which full co-
operation cannot survive, it sometimes leaves
an enduring legacy. Specifically, although it
dies out when F < .3, it first solves private
cooperation’s start-up problem, thereby al-
lowing that strategy to win (compare Figures
3B and 6B when F < .3). This shows that re-
lationships among strategies need not be
competitive—they can also be cooperative.
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A similarly cooperative relationship exists in
strong assurance games between private co-
operation and hypocritical cooperation (com-
pare Figures 3B and 5B when F < .3); and
between private cooperation and TFT when
TFT is burdened by a cost of complexity.

Selective Incentives: Oppositional
Strategies

When social movements are successful, they
may overreach by overproducing their col-
lective good. An example occurs in Figure
5C, in which hypocritical cooperation pro-
duces a high level of the public good in
altruist’s dilemma games. That example fits
Boyd and Richerson’s (1992) observation
that punishment-based strategies can cause
behavior to become stable when these strate-
gies are individually costly and confer no
group benefit. Examples of the overproduc-
tion of social control include the suffocating
conformity of small-town life depicted by
Mark Twain and Sinclair Lewis, and the
problem of “overcompliance” addressed in
the organization literature (Heckathorn
1991). Such overproduction may provoke
countermobilization because reducing the
level of production then constitutes a pubic
good. Countermobilization is a phenomenon
that, according to Klandermans (1994:372),
has been neglected in the collective action
literature. '

Superoptimal levels of social cooperation
open a niche for oppositional strategies that
attack these excessively controlling strate-
gies and restore a more optimal level of col-
lective action. This process is illustrated in
Figure 7A, which depicts an altruist’s di-
lemma (F = 1.22, V/K, = .7). Hypocritical
cooperation leaps upward during the first
several hundred generations, matched by full
opposition. Full opposition continues to in-
crease in representation until the level of col-
lective goods production has been driven
down to about 10 percent. The equilibrium
outcome is a mix of full opposition and
hypocritical cooperation. In essence, the
group polarizes into pro- and anti-collective
goods production subgroups.

Figure 7B shows the effect of varying the
shape of the production function in this
altruist’s dilemma game. The conflict be-
tween hypocritical cooperation and full op-

position recurs in all systems except those
with the most sharply accelerating produc-
tion functions (F < .22). In these latter sys-
tems, hypocritical cooperation fails to arise,
hence full opposition also cannot gain a pur-
chase, so full defection wins. This failure of
hypocritical cooperation reflects a limitation
on compliant control that was identified in
analyses using a forward-looking model
(Heckathorn 1989). When the production
function is sharply accelerating, almost
unanimous contributions are required before
any significant amount of collective good
can be produced (e.g., when F = .1, a 50
percent contribution level would produce
only 7 percent of the collective good).
Hence, a more sharply accelerating produc-
tion function progressively weakens incen-
tives to use less-than-perfect means of con-
trol. So long as compliant control is costly
and less than perfect, its use becomes coun-
terproductive if the production function for
the collective good is sufficiently sharply
accelerating.

Figure 7C reveals further limits to opposi-
tional strategies. These strategies thrive only
in the “weaker” altruist’s dilemmas (.2 <
VIK,, < 1). In the “stronger” altruist’s dilem-
mas, the value of the collective good is so
low that no compliant control emerges (see
Figure 5C), so there is nothing for an oppo-
sitional strategy to oppose.

Oppositional strategies occupy a special
niche: They retreat unless a collective good
is being overproduced. Hence, they thrive
only in the altruist’s dilemma region when a
moralistic strategy has produced a collective
good with a negative net value.

In combination, moralistic strategies and
oppositional strategies function as a system
of checks and balances, with moralistic strat-
egies stepping in to resolve free-rider prob-
lems and oppositional strategies emerging to
hold moralistic strategies in check when col-
lective goods production becomes excessive.
The implication is that a complete system of
selective incentives must include both mor-
alistic and oppositional strategies.

Like any formal model, the model pro-
posed here embodies many simplifying as-
sumptions. Therefore, the question inevitably
arises as to the robustness of its results. A
definitive resolution of this question would
require more extensive analysis. One prom-
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ising sign, however, is the convergence of
many of the model’s conclusions with those
based on forward-looking or backward-look-
ing models.

6 This convergence occurs, in essence, because
all three types of models view behavior as purpo-
sive, in that adaptive expectations govern behav-
ior. The models differ only in the nature of these
expectations—whether the future is calculable,
will be like the past, or is best understood by
those who are most successful. In informationally
rich settings, the predictions of these models can
be expected to converge, as was shown by Cross
(1983) in the case of forward-looking and back-
ward-looking models. The convergence of predic-

THREE PHASES OF COLLECTIVE
ACTION

Except in the smallest or most highly cen-
tralized systems, collective action is orga-
nized incrementally. During the initial phase,
either “zealots” (Coleman 1990:490) or a
“critical mass” (Marwell and Oliver 1993)
make the initial contributions. During the in-
termediate phase, the ranks of contributing

tions therefore suggests that this model’s limiting
assumptions are no less adequate to represent
core aspects of collective action than are those
employed in other formal models of collective
action.
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actors continue to grow because of greater
marginal returns to contributors, strategic in-
teraction, or the operation of selective sanc-
tions. Finally, during the mature phase, the
limits of collective good production are ap-
proached because of physical constraints on
further production or a dwindling pool of ad-
ditional contributors.

During each phase, promoters of collective
action face a distinctive set of problems be-
cause of changes in the shape of that segment
of the production function on which they op-
erate. That is, each subgroup operates within
a different local portion of the group’s glo-
bal production function. Realistic production
functions typically are S-shaped, as illus-
trated in Figure 1A. Therefore, the local coa-
lition that first seeks to initiate production
faces only the leftmost portion of the curve
where the function is accelerating (F < 1).
During the intermediate phase, local groups
face the middle part of the production func-
tion where the function is approximately lin-
ear (F = 1). Finally, in the mature phase, lo-
cal groups face the rightmost portion where
the production function is decelerating (F >
1). Thus, the process of collective goods pro-
duction entails a progressive deceleration of
the local production function faced by each
successive group (F increases). This corre-
sponds to movement from left to right in Fig-
ure 2’s diagram of the game-space.

The process of collective action also en-
tails changes in the value of what may be
termed the “local collective good” that each
subgroup potentially produces. This is the
portion of the global collective good that can
be produced by the subgroup, so it reflects
the marginal gains attainable through contri-
butions by the local group’s members. Dur-
ing the start-up phase, the value of the “lo-
cal” collective good is low because initially
the slope of the production function is almost
flat. During the intermediate phase, marginal
gains increase, and so too does the value of
the local collective good. Finally, during the
mature phase, the slope decreases, reflecting
diminishing marginal returns, so the value of
the local collective good declines. Thus, or-
ganization of collective action is character-
ized by an increase in the value of the local
collective good followed by a decline.

In combination, these changes in the shape
of the production function and in the value

of the collective good cause collective ac-
tion, from its initial phase to its mature
phase, to traverse an arc-shaped path through
the game-space diagram.” Figure 2 shows
such an arc corresponding to Figure 1A’s
production function. Here the system is as-
sumed to contain a total of 25 actors with a
collective good whose relative value is V/K,,
= 20, in which the subcoalition size is 2. In
this system, the start-up phase begins in the
altruist’s dilemma zone with an accelerating
production function because the marginal re-
turns to the initial contributors are low and
the local production function is accelerating.
As more actors contribute, the system moves
up and to the right, entering the PD zone,
then the assurance game zone, then the privi-
leged game zone. Eventually the trajectory
moves down and to the right, entering the
chicken game zone, then reentering the PD
zone, and finally returning to the altruist’s
dilemma zone. This shows graphically both
the complexity of the process of collective
action and the importance of recognizing the
distinctive types of strategic problems that
arise along the way.

7 Procedures for computing these arcs are
straightforward. The first step is to specify the
formula for the S-shaped production function.
For example, Macy (1993:823) used a represen-
tative formula,

1

5-P)i0

= (A)
l+e

1
where P; is the proportion of contributors in the
group, and L; is the level of collective good pro-
duced. This is the formula depicted in Figure 1A.

The second step is to identify the segment of
the production function along which each
subcoalition plays its local game. In the arc de-
picted in Figure 2, interaction is assumed to oc-
cur in pair-wise fashion, so subcoalitions have a
size of 2. Therefore, when collective action is be-
ginning, the first two actors can, through their
collective decisions, produce a proportion of co-
operators of O (if both defect), .04 (if only one
contributes), or .08 (if both contribute). There-
fore, the range from O to .08 is the interval along
which they play their game.

The third step is to determine the marginal
value of the local collective good. This gives the
y-coordinate of the point in the game-space that
corresponds to the subcoalition’s game. The mini-
mum amount of collective good that can be pro-
duced is found by substituting the minimum pro-
portion of contributors (e.g., 0/25 = 0) into equa-
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The shape and location of the curve are not
immutable. Depending on how collective ac-
tion is organized, the curve can be shifted up
into areas of the game-space that favor the
emergence of collective action, or down into
areas that impede its development. Hence,
there is a second option for organizing col-
lective action: Rather than attempting to re-
solve the problems of trust, bargaining, co-
ordination, or overcooperation that exist
within the current game, actors can seek to
change that game. For example, if the arc
can be shifted upward into the privileged
game zone, the success of collective action
is guaranteed.

The arc can be shifted in three distinct
ways. First, the value of the collective good
can be altered. An increase in the value of
the collective good moves the arc upward.
However, it must be increased dramatically
to escape the altruist’s dilemma zone. For
example, in Figure 2’s system, V/K.; must
increase from 20 to 125. Groups sometimes
do not have the capacity to augment directly
the value of their collective goods. However,
if those contributors who are first recruited
are also those who most highly value the col-
lective good, the effect is the same (Hecka-
thorn 1993; Marwell and Oliver 1993).

A second approach is to reduce the size of
the group. If the size of the group is reduced,

tion A, which yields a production level of only
slightly more than 0, (i.e., Min(L) = .0067). The
maximum amount of collective good that can be
produced is found by substituting the maximum
proportion of contributors (e.g., 2/25 = .08) into
equation A, which yields a level of Max(L) =
.0148. When the difference between these two
levels (.0148 — .0067 = .0081) is multiplied by
the value of the collective good (20), the result
gives the value of the local collective good that
can be produced by the subcoalition (i.e., 20 *
.0081 = .162).

The final step is to determine the value of the
exponent, F. This gives the x-coordinate of the
subcoalition’s location in game-space. Each seg-
ment of the S-shaped production function can be
approximated by the simpler function defined by
equation 2 and depicted in Figure 1B. The aim is
to match the extent to which the segment is con-
vex, linear, or concave. This can be done by con-
sidering three points on the segment—the two
endpoints, Max(L) and Min(L), and the midpoint
between them, Mid(L). In the above example,
when P; = 1/25 = .04 of the players contribute,

the potential difficulties of organizing collec-
tive action are correspondingly decreased
(Olson 1965), and the arc is moved upward.
This also causes the curve to expand horizon-
tally, thereby increasing the range through
which the shape of the production function
changes. Whether this approach is available
depends in part on the distribution of re-
sources among the potential contributors
(Heckathorn 1993). If a subset of potential
contributors has sufficient resources to pro-
duce the collective good, that effectively re-
duces the group’s size. However, the group
size must be reduced dramatically to escape
the altruist’s dilemma zone—in Figure 2’s
arc, group size must decrease from 25 to 9.
A third factor is the size of the subco-
alitions through which collective action is in-
crementally organized. For example, consis-
tent with my assumption that interaction is
pair-wise, the arcs were computed assuming
a subcoalition size of 2. That is, each addi-
tional contribution stemmed from a strategic
interaction between two potential contribu-
tors. However, if the subcoalition size is in-
creased, the effect resembles a decrease in
group size because the arc moves upward and
the legs move outward. Therefore, start-up
problems can be eased. Whether this ap-
proach is feasible depends on whether there
are preexisting relationships that allow con-
tributors to motivate others to contribute.
Start-up costs are more easily absorbed when
potential contributors can also guarantee the
participation of their followers. An example
of this approach is Broadhead and Hecka-

from equation A, the production level is Mid(L)
=.01. If equation 2 is solved for F, an expression
can be derived expressing F as a function of these
three points:

| Max(L) - Mid(L)
" Max(L)—Min(L)
In(.5)

For exdmple, when .0148, .01, and .0067 are sub-
stituted for Max(L), Mid(L), and Min(L) respec-
tively, in equation B, F = .745.

The same procedure can be used to identify the
subgames played by subsequent additions to the
set of contributing actors. For example, when the
subcoalition consists of potential contributors 11
and 12, they play along the P;= .4 to P,= .48 seg-
ment of the production function, a subgame with
coordinates V/K,.; = 3.624 and F = .9193.

F= (B)
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thorn’s (1994) AIDS prevention intervention
in which “augmenting the cohesion of high-
risk groups [will] . . . increase their capacity
for collective action and facilitate the emer-
gence of AIDS prevention practices and
norms” (p. 485).

As interpreted from the standpoint of the
proposed model, these options provide the
focus for some who are most critical of ap-
plications of the PD paradigm to collective
action. For example, Fireman and Gamson
(1979) conclude that collective action re-
search should focus on three factors:
“...how organizers raise consciousness of
common interests, develop opportunities for
collective action, and tap constituents’ soli-
darity and principals” (p. 36). As interpreted
using the proposed model, this corresponds
to increases in the value of the public good
(V), reductions in the cost of participation
(K,1), which they term a “search for more ef-
ficient ways of bringing about the collective
good” (p. 33), and increases in subcoalition
size—all of which shift the arc upward into
more favorable regions of the game-space.

After means for shifting the arc into more
favorable regions have been exhausted, as in-
evitably they must, the success of collective
action depends on whether the organizational
capacity of the group suffices to resolve any
remaining dilemmas. If only easy dilemmas
remain (i.e., dilemmas located high in game-
space), even poorly organizéd groups can act
collectively. When the dilemmas are more
difficult, only better organized groups are
successful.

Fireman and Gamson’s (1979) argument
that potential social dilemmas in collective
action are resolved through appeals to iden-
tity and building group solidarity suggests
that the arc typically shifts so far upward
that it enters the privileged game zone.
From the standpoint of the proposed model,
this appears dubious, for it would require
that collective goods always be of great
value, that groups be tiny, or that groups be
highly cohesive. Furthermore, from the fact
that collective action traverses an arc-
shaped path, it follows that the initiation
process is most problematic. Except under
highly favorable conditions, initiators face
an altruist’s dilemma (i.e., the legs of the
arc extend downward into the altruist’s di-
lemma region). This reflects the fact that

their efforts will yield a net loss unless their
contributions are subsequently augmented
by other contributions.

The analysis shows that the range of strat-
egies capable of initiating collective action
when facing an altruist’s dilemma is severely
limited. TFT does not suffice, nor does full
cooperation, because both always lose out to
full defection. Among the strategies consid-
ered, only hypocritical cooperation can ini-
tiate cooperation in an altruist’s dilemma
(Figure 5A). Yet even here there is a poten-
tial problem because hypocritical coopera-
tion can be neutralized by oppositional con-
trol (Figure 7A).

If oppositional strategies emerge too
quickly, collective action is stillborn. Hence,
the initiation of collective action must be
relatively rapid if it is to avoid being
crushed by oppositional control. Opposi-
tional control necessarily emerges in reac-
tion to compliant control, so it always
emerges after compliant control. Further-
more, organizing oppositional control tends
to be more difficult than organizing compli-
ant control because oppositional control
confronts a coalition of normative control-
lers, whereas compliant control confronts
noncooperative individuals (Heckathorn
1990). Both these factors tend to provide a
breathing space for compliant control. If
collective action is initiated sufficiently
quickly, it can move upward along the arc to
escape the altruist’s dilemma region before
it is neutralized by oppositional control. In
contrast, if collective action bogs down dur-
ing the initiation phase, the organizing coa-
lition may fragment. For example, the first
states passed the ERA with little contro-
versy, then opposition mounted. Had the
ERA’s supporters been able to act more
quickly, they might have succeeded.

Oppositional control plays a different role
during the mature phase of collective action.
According to the proposed model, success-
ful social movements are not self-limiting.
In terms of Figure 2, when the group
traverses the entire length of the arc, it even-
tually reaches the rightmost leg and reenters
the altruist’s dilemma region. That reflects
diminishing marginal returns so severe that
each new contribution yields a net loss. The
collective good is then overproduced. It is
then that oppositional control reappears to
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limit further collective goods production. If
compliant control and oppositional control
are well-matched in terms of cost and effi-
cacy and the group is homogeneous, the ef-
fect is to stabilize production near the
boundary between the PD and the altruist’s
dilemma regions of game-space on the right
leg of the arc. That produces an approxi-
mately optimal level of collective goods
production. However, if compliant control
and oppositional control are not well-
matched or the group is heterogeneous, the
level may be far from optimum. For ex-
ample, if valuations of the collective good
are heterogeneous and production is orga-
nized through selective incentives,
countermobilization may begin early, long
before an optimal production level is-at-
tained (see Heckathorn 1993:343). Simi-
larly, in the case of AIDS prevention,
“ .. obstacles to containing the AIDS epi-
demic included the difficulty of mobilizing
latent high-risk groups, and overcoming the
high level of mobilization exerted by low-
risk groups whose moral/political agenda
conflicted with effective AIDS prevention”
(Broadhead and Heckathorn 1994:475). As a
result, levels of collective action to combat
AIDS were initially quite low. Alternatively,
if oppositional control is costly, counter-
mobilization may begin late, only after
overproduction has become substantial. In
either case, mature systems of collective ac-
tion can be identified qualitatively by a
stalemate attained between proponents of
greater production and lesser production of
the collective good. Examples of such stale-
mates abound. For example, the environ-
mental movement made great strides during
the 1970s and early 1980s, but powerful
coalitions are now deployed on both sides of
environmental issues. Similarly, the move-
ment to limit speech that is insensitive to is-
sues of race, ethnicity, class, and gender
achieved much success during the 1980s,
but is now confronted by a reaction against
“political correctness” in the mid-1990s.
Substantial opposing coalitions are currently
fighting either to expand or restrict defense
expenditures, welfare benefits, consumer
protection regulations, interstate highways,
large-scale power plants, antitrust provi-
sions, the rights of criminal suspects, and
regulations protecting collective bargaining.

CONCLUSION

Theories of collective action have become
more divergent because of the multifaceted
character of the phenomenon. As in the fable
involving the blind men and the elephant,
different groups of analysts have focused on
distinct forms of collective action. Some
view collective action as N-person Prisoner’s
Dilemmas dominated by free-rider problems.
Others identify different dilemmas that ren-
der social action problematic. Finally, some
deny that collective action involves any form
of social dilemma. According to my analy-
sis, all three positions are correct when the
analyses are viewed in their appropriate con-
texts.

Douglas Heckathorn is Professor of Sociology at
the University of Connecticut and Co-Director of
the Eastern Connecticut Health Outreach Pro-
ject. This paper grew out of his long-standing in-
terest in developing formal theories of norms and
collective action. He is currently collaborating
with Robert Broadhead in efforts to apply these
ideas to increasing the access to primary medical
care by persons infected with HIV, and to pre-
venting AIDS among drug injectors. Another re-
cent work focuses on political rhetoric and pub-
lic policy. He is currently completing a book on
collective action.
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