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Abstract

Formal theories of collective action face the problem that in large groups a single

actor makes such a small impact on the collective good that cooperation is irrational.

Critical mass theorists argue that this ‘large group problem’ can be solved by an ini-

tial critical mass of contributors, whose efforts can produce a ‘bandwagon’ effect,

making cooperation rational for the remaining members of the population. However,

critical mass theory requires an explanation of how a critical mass can form in the

first place. I present a model of collective action that solves this problem by showing

how aspects of social structure – including network topology, homophily, and local

coalition formation – can allow rational actors to endogenously form a critical mass.

The findings indicate that as the mobilization effort becomes more ‘complex’, clus-

tered networks and homophily become increasingly important for critical mass col-

lective action.
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The large group problem in collective action has a very simple logic: the

greater the number of people that is required to produce a collective good,

the less the value of any single individual’s contribution. Mancur Olson

(1965) famously argued that this logic implies that, barring additional incen-

tives, no individual will be rational to contribute, and voluntary collective

action in large groups is doomed to failure. Despite Olson’s ‘large group

argument’, large group collective action occurs all the time: political pro-

tests, social and environmental movements, and electoral campaigning are

all examples of ‘mass action’, in which large numbers of people mobilize

for a collective good (Finkel et al., 1989; Heckathorn, 1993, 1996; Kim and

Bearman, 1997; Marwell and Oliver, 1993). Which poses the puzzle: if large

group collective action is formally impossible, how come we empirically

observe so many instances of mass action?

The most significant response to Olson’s large group argument comes

from Marwell and Oliver’s (1993) study of critical mass dynamics (see also

Marwell et al., 1988; Oliver et al.,1985; Oliver and Marwell, 1988; Prahl et

al., 1991). While Olson argues that the only way to initiate sizable collec-

tive action is to add ‘selective incentives’, such as punishments for defec-

tion or rewards for cooperation, Marwell and Oliver show that contributions

to collective action can create ‘positive externalities’, whereby initial contri-

butions create more incentives for subsequent actors. This generates a

‘bandwagon’ effect that can mobilize large populations to support a com-

mon cause. According to Marwell and Oliver, the solution to Olson’s puzzle

of large groups is not that people are irrational, but that Olson fundamen-

tally misunderstood the self-reinforcing logic of cooperation. In the last

decade, this critical mass argument has played a major role in the develop-

ment of collective action theory (Heckathorn, 1993, 1996; Kim and

Bearman, 1997; Macy, 1990; Marwell and Oliver, 1993; Oliver, 1993;

Rasler, 1996; Yin, 1998), and provided an essential foundation for incorpor-

ating rational choice theory into the mainstay of sociological approaches to

collective action (Oliver and Marwell, 2001).

The issue for critical mass theory is explaining where the critical mass

itself comes from.1 Until the bandwagon gets started, how does anyone have

an incentive to participate at all? Marwell and Oliver (1993) propose that

significant heterogeneity in the distribution of resources will create a group

of highly motivated, high-resource individuals whose contributions are suf-

ficient to generate large positive externalities for others (Kim and Bearman,

1997; Marwell and Oliver, 1993). While this solution is certainly applicable

to some forms of collective action, such as philanthropic donations to build

a hospital, a library, or a church (Marwell et al., 1988; Oliver and Marwell,
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1988), it begs the question of how these individuals coordinate their efforts

to organize their critical mass contribution. Even high-resource individuals

must solve the ‘coordination dilemma’ of figuring out who is interested, and

how best to collaborate to initiate collective action (Marwell and Oliver,

1993).2 This problem is exacerbated in large populations with less extreme

resource distributions, in which actors who want to form a critical mass will

have fewer resources, and must self-organize to get their campaign off the

ground.

There are many examples of ‘mass action’, such as large strikes

(Klandermans, 1988), political protests (Opp and Gern, 1993), social revo-

lution (McAdam, 1986, 1988), and violent revolution (Wood, 2003), in

which people with moderate resources coordinate to initiate a bandwagon

of growing participation. In many examples of grassroots mobilization,

organizers may have non-monetary resources to offer, such as time and

enthusiasm (Marwell and Oliver, 1993).3 However, the primary measure of

success for these kinds of collective action is typically not the amount of

support given by any individual, but the number of participants that can be

mobilized (Granovetter, 1978; Schelling, 1978). This is typically true for

strikes, protests, and revolutions, where a high-resource individual simply

cannot do the work for everyone (see, e.g., Heckathorn, 1993, 1996; Kim

and Bearman, 1997; Marwell and Oliver, 1993; Polletta, 1998). Large num-

bers of people need to mobilize in order for the action to succeed. The ques-

tion that needs to be answered is how these people can coordinate to get

their action off the ground.

Previous attempts to solve this problem have focused on the role of struc-

tural properties, such as social networks (Chwe, 1999; Gould, 1993; Kim

and Bearman, 1997; Macy, 1990) and homophily (Chiang, 2007; Chwe,

1999), in the emergence of bandwagon dynamics.4 These studies have found

that weak ties in the social network (à la Granovetter’s (1973) ‘strength of

weak ties’ argument), and moderate levels of homophily, can be very effec-

tive in helping to promote the spread of social cooperation.5 Significantly,

studies also found that too much homophily can actually impede the success

of collective action by limiting the diversity of people’s social networks

(Boyd and Richerson, 2002; Chiang, 2007). These approaches to collective

action demonstrate how structural factors can explain the emergence of

bandwagon dynamics; however they face the problem that they eliminate

population size from the calculus of cooperation, thereby failing to engage

the basic question of how cooperation emerges in large groups.

I present a model of critical mass formation that builds on Marwell and

Oliver’s (1993) theory of critical mass and Heckathorn’s (1996) theory of
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social dilemmas, to show how the formation of local coalitions can allow

rational actors to initiate large group collective action. I show that if actors

are allowed to interact locally, creating coalitions of cooperators, they can

endogenously mobilize the critical mass necessary to initiate population-

wide cooperation. Contrary to earlier studies (Centola et al., 2005; Chiang,

2007), I find that the effect of homophily on initiating collective action is

not curvilinear; rather, I find that more homophily is better. I also find that

increasing the number of weak ties can prevent critical mass formation,

which suggests that clustered networks (with no weak ties) can sometimes

be better for promoting bandwagon dynamics. These results show how

homophily and social networks can dramatically, and unexpectedly, help to

explain the emergence of collective action in large groups.

N-person games: From prisoner’s dilemma to critical
mass

The classic approach to modeling collective action begins with a population

of N actors who are embedded in an ‘N-person game’, in which an individu-

al’s payoffs for cooperation and defection are contingent upon the decisions

of the rest of the population taken as a whole. The traditional formalization

of the N-person prisoner’s dilemma (Bonacich et al., 1976; Hamburger,

1973) states that regardless of how many people are cooperating, from 0 to

N, it is always rational to defect. Or, more technically, defection ‘domi-

nates’ cooperation at every level of public goods production.

Despite this dominance of defection over cooperation at each point along

the production curve,6 the formal definition of the N-person prisoner’s

dilemma also states that the payoff for cooperating when there is universal

cooperation is always better than the payoff for defecting when there is uni-

versal defection. This is a familiar rendition of the social paradox embodied

by collective action (Hardin, 1982; Olson, 1965), in which although every-

one is better off with universal cooperation than with universal defection,

cooperation is forestalled by the fact that at every point along the way it is

individually beneficial to defect. Consequently, everyone defects, and no

collective goods are produced.

In the critical mass model developed by Marwell and Oliver (1993), a

small group of interested individuals can provide a substantial amount of

the collective good, creating incentives for others to also participate. A cas-

cade of collective action can thus be triggered by the initial contributions of

a few motivated individuals. However, it is clear that in the N-person pris-

oner’s dilemma there cannot be a critical mass. No matter how large the
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group of initial contributors is, defection dominates cooperation. To gener-

ate critical mass dynamics, we must model collective action not as an N-

person prisoner’s dilemma, but as an N-person assurance game (Chong,

1991; Runge, 1984). Unlike the prisoner’s dilemma, in which actors have

competing incentives, in an assurance game the basic problem is one of

coordination. The formal definition of an N-person assurance game states

that each person has a threshold for cooperating,7 which is defined as the

number of other people that need to cooperate before a person will be will-

ing to also contribute. Below each person’s threshold level, they will not

participate, but above it they will gladly help out. Formally, this translates

into the dominance of defection over cooperation below the threshold, and

the reverse above it.

Threshold models like those studied by Schelling (1978) and Granovetter

(1978) show how populations with distributed threshold values are suscepti-

ble to mobilization by a critical mass of initiators, activists, or innovators

whose actions trigger a chain reaction of participation. Each contributor

increases the level of cooperation, which further increases the likelihood

that the remaining actors will also have their thresholds triggered.

In an N-person assurance game, beginning from universal defection, no

actor has an incentive to be the initial contributor, and thus the population is

faced with the ‘start-up’ problem of critical mass. I follow Granovetter

(1978), Schelling (1978), Marwell and Oliver (1993), Rogers (1995) and

others (Dodds and Watts, 2004, 2005) in defining the ‘critical mass’ as the

gap between zero cooperation and the level of cooperation at which the

growth of participation becomes self-sustaining. By definition, below the

critical mass level, individuals will not cooperate.

The challenge of bridging this gap is the key problem for large group

collective action. It is the situation that organizers find themselves in when

they want to organize a strike, but they know that no one will join until they

see enough others join to suggest that the strike will proceed (Klandermans,

1988). Activists are faced with a similar problem when they want to orga-

nize a political demonstration, but know that oppressive state forces will

keep citizens away until they see others going out to demonstrate (Finkel et

al., 1989; Opp and Gern, 1993). The classic start-up problem for critical

mass theory is how to get anyone to be the first to participate.

Opp and Gern’s (1993) study of the 1989 Berlin protests sheds signifi-

cant light onto how populations self-organize to solve this problem. Before

the protests began, ‘‘[c]itizens were faced with a dilemma: They had strong

desires to engage in action against the government, but the costs of doing so

were high. A citizen considering participation in such spontaneous

Centola 7



gatherings is faced with a coordination problem’’ (Opp and Gern, 1993:

662). Opp and Gern argue that the solution to the start-up problem came

from social groups and personal networks. ‘‘Networks of friends, colleagues,

or neighbors constitute micro-contexts for mobilizing citizens. even in

authoritarian regimes, politically homogeneous networks whose members

trust each other and communicate in a relatively uninhibited way may be

established’’ (Opp and Gern 1993: 662).

This solution to the start-up problem has not escaped the attention of for-

mal theorists. Kim and Bearman (1997) attempt to provide a formal solution

to the problem of critical mass in large groups by using actors embedded in

social networks. However, even by their own standards Kim and Bearman’s

model ‘‘falls short of a large group solution’’ (1997: 71). This is because the

actors in their model assume that the public good will only be divided

among their immediate neighbors in the network. They do not evaluate the

costs and benefits of a public good shared over a large population (see Kim

and Bearman, 1997: 77279). Similarly, Chwe (1999) studies the effects of

social network structure on the initiation of collective action. However, he

also uses a model in which actors do not evaluate their payoffs using a ‘glo-

bal’ production function, but instead use their local networks. Consequently,

the size of the population is irrelevant to the actors’ decision-making. Other

formal models of social network mobilization in collective action (Centola

and Macy, 2007; Chiang, 2007; Kitts, 2000, 2006, 2008; Kitts et al., 1999;

Macy, 1991), while making interesting contributions in their own right, have

similarly failed to address the large group problem head on. None of these

studies shows how a voluntary critical mass can be initiated when the col-

lective good is divided over a large population (Chwe, 1999; Kim and

Bearman, 1997).

My approach to collective action in large groups combines Marwell and

Oliver’s (1993) theory of critical mass with Heckathorn’s (1996) model of

strategic interactions in local coalitions to address this problem.

Heckathorn’s (1996) study shows how actors’ strategic incentives change

over the course of collective action. I develop a simple extension of this

model, which shows that changing the size of actors’ local coalitions can

alter their strategic incentives – turning a small number of defectors into a

critical mass of cooperators. My model provides a general solution to the

problem of critical mass in large groups by showing how to solve for the

minimum coalition size required to initiate social cooperation. I then use

this model to investigate the effects of homophily and network structure on

the dynamics of critical mass formation. I find that increasing homophily

helps critical mass dynamics, while increasing weak ties can sometimes
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impede these dynamics. These results show that the effects of homophily

and network structure on the success of large group collective action can

depend decisively on the size of the critical mass coalition.

A coalition-based model of collective action

Following Heckathorn (1996), in the present model the decision whether to

contribute is not modeled as a solitary action in which the actor must evalu-

ate her rewards in a ‘one-versus-all’, N-person framework (Bonacich et al.,

1976; Granovetter, 1978; Hamburger, 1973; Marwell and Oliver, 1993;

Schelling, 1978).8 Instead, actors form local coalitions of n individuals who

collectively try to initiate social change. My approach relaxes Heckathorn’s

(1996) assumption that all coalitions are of size n = 2, which allows me to

investigate the effects of coalition size on the dynamics of initiating critical

mass. An actor’s decision whether to cooperate or defect is determined by

the incentives for mutual cooperation, mutual defection, unilateral defec-

tion, and unilateral cooperation among the members of the coalition. In a

local, or n-person, coalition, agents evaluate the outcomes of each of these

alternatives in terms of the increase in the public good, L, that each strategy

produces.

The level of the public good, L, is determined by a production function

that aggregates individual contributions into collective goods (Hamburger,

1973). The production function commonly used both in economic analysis

and in studies of collective action is an S-shaped curve.9 Following Macy

(1990) and others (Heckathorn, 1996; Kim and Bearman, 1997), I model this

production curve with the cumulative logistic function given in equation (1).

L(p) =
1

1 + e
(:5� p + d

N1�J )b
ð1Þ

In equation (1), N is the total population size, 0 � p � n is the number of

people in the coalition that are cooperating, 0 � d� N2n is the level of par-

ticipation by members outside the coalition, and 0 � J �1 is the jointness

of supply 2 the degree to which increases in the size of the population

decrease each person’s enjoyment of the good (discussed in more detail

below).10 The quantity p + d
N1�J represents the relative impact of the coalition’s

cooperation on the provision of public goods. For studying the initiation of

collective action, I assume that the initial level of cooperation by members

of the population is d = 0. Figure 1 shows a graphical representation of L for

levels of participation ranging from zero cooperation to full cooperation.

The key feature of this function for critical mass dynamics is that increasing
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levels of participation in the early stages increase the rewards for further

participation.11

Equation (2) shows the payoff, Ui, that a player i receives during one

iteration of the game, where Vi is the value that an individual actor assigns

to the collective good (randomly distributed across the population), and Ci

= 1 if actor i cooperates, otherwise Ci = 0.

Ui = ViL� CiK ð2Þ

When Ci = 1, an individual’s rewards for contributing, Vi L, are reduced by

the cost of cooperation K = 1, which is the same for every player.12

Heterogeneity in V indicates that some members of the population place a

higher value on the collective good, and thus are more likely to join the col-

lective action early on. Actors with lower Vi find participating more costly

and thus will wait until others have generated more incentives before they

participate.13 Critical mass models of collective action (Granovetter, 1978;

Heckathorn, 1990, 1993; Kim and Bearman, 1997; Macy, 1990, 1991;

Marwell and Oliver, 1993; Young, 2009) have traditionally used the normal

distribution of interests as the foundation for their analyses. Following this

tradition, I will also focus my analysis on normal distributions of ‘‘interests

Figure 1. S-shaped production function.
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in participation,’’ paying particular attention to the robustness of the model’s

dynamics for different values of both the mean (�V ) and standard deviation

(s) of the distribution. All actors are assumed to have homogeneous

resources, equal to one unit of contribution per person.

An individual’s action is based on the payoffs for cooperation or defec-

tion in a strategic game with the other members of the actor’s coalition. To

set up the strategic interaction between an actor and the rest of her coalition

members, I represent the fellow coalition members as a single actor. This

allows the decision problem within a coalition to be represented as a simple

232 game. One half of the 232 game is an actor who is randomly selected

from the population and asked to decide whether to cooperate or defect. The

actor bases her calculation on her own interest in the public good plus the

willingness of her fellow coalition members to cooperate. The other half of

the 232 game is a collective ‘player’ representing the aggregated interests

of the other coalition members.

If every member of an actor’s coalition is willing to cooperate, the

‘player’ that collectively represents them is also willing to cooperate.

However, if any of the members of a players’ coalition would prefer defec-

tion, then their collective representation is defection.14 This accurately

reflects the fact that mutual cooperation within a coalition only occurs when

everyone in the coalition agrees to cooperate. Thus, I make the conservative

assumption that it is only under unanimous cooperation that a coalition can

create a critical mass and mobilize collective action.

The game among the coalition members has four possible outcomes.

First, both the active actor and the player representing the other coalition

members can cooperate. This is denoted as ‘R’, in deference to the prison-

er’s dilemma, since it corresponds to the ‘reward’ payoff where both players

win. Second, the active player can cooperate, but the other player can defect

– which would indicate that at least one of the other coalition members was

unwilling to contribute to the collective action. This is called ‘S’, again with

reference to the prisoner’s dilemma, since it is the ‘sucker’ payoff, where

you contribute but no one else does. Third, the active player can defect while

the other player cooperates. This is denoted as ‘T’ since it is the ‘temptation’

in the prisoner’s dilemma, where the active player tries to get the benefits of

the other actor’s cooperation without herself contributing. Finally, both play-

ers can defect. This is called ‘P’, referring to the mutual punishment payoff

in the prisoner’s dilemma, and results in no one contributing anything. This

outcome corresponds to Olson’s expectations for free-riding in collective

action.
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Table 1 shows the payoffs that an actor i receives for all four outcomes

(Ri, Si, Ti, and P, equations (3)2(6)), which are represented in terms of the

interaction between an individual actor (‘row’) and the other members of

the coalition treated as a collective actor (‘column’). In the upper left cell,

where both the row and column cooperate, the coalition produces the maxi-

mum increase in the collective good. All players receive the full value of

local goods production, but each player’s payoff is also reduced by the cost

of cooperation, K. In the upper right cell in Table 1, the active actor (row)

contributes while the remainder of the coalition (column) defects, so the

row gets the ‘sucker’ payoff, S. This reflects the lower level of collective

goods production resulting from only a single actor cooperating, and the

row’s absorption of the contribution cost, K. In the lower left cell, the active

actor (row) defects while the other coalition members (column) contribute.

The temptation payoff, T, also reflects a lower level of collective goods pro-

duction than mutual cooperation, but the actor does not incur any contribu-

tion costs. Finally, in the lower right cell, everyone defects, so no change is

made to the level of the collective good and no marginal utility is gained

from the interaction. Since no contribution costs are incurred, the net payoff

from the ‘punishment’ outcome, P, is zero.

Based on Heckathorn (1996), the payoffs for cooperation and defection

within a coalition correspond to unique values of T, R, P, and S. Each order-

ing of these values, in turn, corresponds to a distinct strategic situation. This

is essential for understanding collective action since it means that neither the

prisoner’s dilemma nor the assurance game have sole province over the stra-

tegic problem. There are five qualitatively different orderings of the payoffs

T, R, P, and S, each of which corresponds to a different strategic situation, or

game type, that can be encountered by actors in a collective action problem.

These games are: the prisoner’s dilemma, the altruist’s dilemma, the privi-

leged game, the assurance game, and the chicken game.

Table 1. Core game’s payoff matrix. The payoffs show a 232 game with row
versus column. The term in each cell is the row’s payoff

C (Rest of coalition cooperates) D (Rest of coalition defects)

C (i Cooperates) Ri = ViL(n)� K (3) Si = ViL(1)� K (4)
(R = the ‘reward’ payoff) (S = the ‘sucker’ payoff)

D (i Defects) Ti = ViL(n� 1) (5) P = 0 (6)
(T = the ‘temptation’ payoff) (P = the ‘punishment’ payoff)
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The first of the five games, the prisoner’s dilemma (T . R . P . S),

corresponds to a tension between individual and collective interests, result-

ing in a dominant strategy of defection. This is the classic framing of the

problem of collective action. The altruist’s dilemma (P . T . S . R,

which falls outside the present discussion) corresponds to both an individual

and collective interest in defection – which makes defection both dominant

and unproblematic. The flip side of this is the third game, the privileged

game (R . T . S . P), in which individual and collective interests coin-

cide on cooperation, making cooperation the dominant strategy. In the

fourth game, the assurance game (R . T . P . S), interests are conditional

– actors will cooperate only if every other member of the coalition also

cooperates. Finally, in the chicken game (T . R . S . P), interests are also

conditional, but the interest structure is the opposite of the assurance game.

Actors cooperate in the chicken game only when the rest of the coalition

defects (see Heckathorn, 1996, for a more detailed description of these

games and their empirical applications).

Figure 2 represents these four strategic situations (the altruist’s dilemma

is omitted) in terms of a dynamic strategy space for individuals engaged in

mobilizing collective action. Each individual has a unique location in the

strategy space based on her values of T, S, R, and P. An individual’s loca-

tion is determined by three variables. The first is her utility from contribut-

ing to the collective action (Ui), which is represented by the z-axis. Lower

values of Ui correspond to the prisoner’s dilemma. Intuitively, this means

that actors who get less utility from the public good, will be less inclined to

cooperate. Similarly, very high values of Ui correspond to the privileged

game. This means that people who derive great utility from the good are

likely to cooperate regardless of what others do.

As stated in equation (2), the value of Ui is determined both by Vi, which

is endogenous to each actor, and by the impact that each coalition makes on

the collective good, which changes based on the current level of participa-

tion in the population. Figure 1 shows that as participation increases, the rate

at which new contributions matter for the public good (i.e., the steepness of

the production curve) also increases. This is the cumulative effect of a band-

wagon dynamic – as more people cooperate it makes more people want to

cooperate. Contributions have a greater impact on the public good further

along the curve than at the very beginning (Finkel et al., 1989; Heckthorn,

1996).15 Consequently, actors’ vertical positions in the space can change as

a function of other actors’ behaviors. A few actors’ decisions to cooperate

can alter the strategic situations of hundreds of others, bringing them into

the collective action.
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The second and third variables that determine an individual’s position in

the strategy space (the x and y axes) correspond to the strategic interdepen-

dence of the actors within a coalition. The x axis, F1, is the influence that

the active actor’s decision has over the decisions made by the rest of the

coalition members, while the y axis represents F2, the influence of the rest

of the coalition on the active actor’s decision. These reciprocal effects of

coalition members on each other’s interests in cooperating evolve over the

course of a collective action, altering the relative values of F1 and F2, and

moving actors horizontally within the strategy space. Formal definitions of

F1 and F2, along with complete analytical details of the model, are presented

in Appendix 1.

The strategy space shown in Figure 2 (plus the altruist’s dilemma, which

is located below the prisoner’s dilemma) exhaustively captures the possible

Figure 2. Prisoner’s dilemma incentives in the N-person assurance game with no
coalitions (N = 1000, J = 0.3, �V = 600, s = 200). The strategic interests of actors
playing an N-person assurance game without coalitions.
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set of strategic interactions within a coalition.16 Over the course of collec-

tive action, actors move through this space, which alters their strategic inter-

ests in cooperation, ultimately causing them to either cooperate or defect. At

any given time, the best strategy for a player i depends upon both the rela-

tive values of P, Ri, Si, and Ti, and the collective interests of the n21 other

actors in the coalition.17

Because of heterogeneity in the population, players within a coalition can

be located in different regions of the strategy space. Consequently, the set of

strategic interactions in a coalition includes not only the four symmetric

games corresponding to each region of strategy space, but also a set of

asymmetric games, occurring when actors play across regions. To simplify

the model, strategy selection within a coalition is based on backward induc-

tion. This reduces the possible set of choice outcomes to a series of either

dominant strategies (such as defection in the prisoner’s dilemma) or condi-

tional strategies (such as defection in the assurance game), depending on an

actor’s strategic situation. The basic rules for the model are as follows.

Players with a dominant strategy always act accordingly. Thus players

located in the prisoner’s dilemma region always defect, and players located

in the privileged game region always cooperate. Players in a region without

a dominant strategy play their best response to their alter. Thus, a first-

mover facing a player with a dominant strategy chooses her own best

response. A player in the assurance game region will cooperate on the condi-

tion that all of the other members of the coalition are also willing to coop-

erate. Sequential best response can also produce a first-mover advantage; for

example, when a player in the chicken game region meets fellow chicken

game players, the first player defects, thereby eliciting cooperation from the

alter. Table 2 summarizes outcomes by move status and preference type.

In summary, the setup of the dynamic model is based on two ideas: (1)

because of group heterogeneity, all individuals within the system do not

occupy the same point in strategy space, with some occupying regions that

Table 2. First and second mover payoffs in the sequential game-playing model

Strategy choice by move Second mover

First Mover PD AG PG CG
PD D, D D, D D, C D, C
AG D, D C, C C, C D, C
PG C, D C, C C, C C, D
CG C, D C, C D, C D, C
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are more conducive to cooperation than others; and (2) through the forma-

tion of local coalitions actors can alter the incentives for one another, mak-

ing cooperation a rational course of action. The agent-based model

developed in this study resembles the sequential decision models used in

other formal theories of collective action (Heckathorn, 1993, 1996; Kim

and Bearman, 1997; Macy, 1990; Marwell and Oliver, 1993). In each itera-

tion, a single player is randomly chosen from the population and activated.

The active player i then randomly selects n21 neighbors and constructs a

local coalition. Each player in the coalition evaluates the payoffs associated

with each of the four possible outcomes of her N-person game and chooses

the action that yields the greatest payoff. Thus, coalitions only cooperate

when it is individually rational for every member of the coalition to coop-

erate. The players’ collective choices result in one of the four outcomes.

After the coalition acts, a new player is randomly selected, and the process

repeats itself. This procedure is run asynchronously, allowing each

coalition’s decision to affect the state of the world before a new player is

activated. Technical details of the simulation model are provided in

Appendix 1.

The emergence of critical mass

The model is initialized in a state of universal defection (d = 0) with a popu-

lation size, N, of 1000 actors, and a distribution of interests (V) such that the

population is in an N-person assurance game. Each actor has a threshold

past which cooperation would be individually rational. However, until the

threshold is reached, each actor prefers defection over cooperation. Thus, a

critical mass is necessary in order to initiate collective action (Granovetter,

1978; Heckathorn, 1993; Kim and Bearman, 1997; Marwell and Oliver,

1993; Schelling, 1978).

Figure 2 shows the strategic makeup of the population when actors are

not allowed to form coalitions. With zero cooperators, the incentives for a

single person to initiate cooperation are insufficient to overcome the costs

of contributing (i.e., for all actors i, ViL(1) \ K). Thus, each individual in

the population is located in the prisoner’s dilemma region of the strategy

space: they would like others to cooperate, but are unwilling to cooperate

themselves.

To initiate critical mass dynamics and solve the collective dilemma,

actors are allowed to self-organize into local coalitions. The coalition size

required to initiate successful collective action can be analytically derived

from equations (1)–(6), as shown in Appendix 1. Briefly stated, the size of
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the critical mass is given by the minimum coalition n, such that if actors

organize into coalitions of size n, at least n people will prefer mutual coop-

eration to unilateral defection, as given by expression 7.

min (n) s:t:
XN

i = 1

H(Ri � Ti)

 !
� n ð7Þ

For each combination of parameters N, J, �V , and s we can determine the

minimum coalition size, n, that is sufficient to initiate collective action. For

the settings shown in Figures 2 and 3, the coalition size necessary to provide

a critical mass is eight players. Figure 3 illustrates how coalition formation

changes the strategic situation for the actors stuck in the prisoner’s dilemma

Figure 3. Critical mass formation with local coalitions (N = 1000, J = 0.3,
�V = 600, s = 200, n = 8). The strategic interests of the actors from Figure 1, after
they are allowed to form into coalitions of size n = 8. The small group in the
assurance game can form a critical mass coalition and initiate collective action.

Centola 17



in Figure 2 by allowing coalitions of size n = 8 to form. In Figure 3, ten

individuals have moved from the prisoner’s dilemma region of the strategy

space up into the assurance game region. Each of these ten individuals is

willing to cooperate if they can find seven other coalition members who

will also cooperate.

The population shown in Figures 2 and 3 is located in a fully connected

network, which means that everyone is connected to everyone else. Each

person can sample the entire population to see if there are others ‘like them’

who would be willing to cooperate.18 As long as actors can form coalitions

of the required size, they keep searching until they find seven others with

whom they can coordinate to initiate collective action – at which point, the

start-up problem is solved. As shown in Appendix 1, this model is quite gen-

eral. For smooth, single-peaked distributions of thresholds for cooperation

(see Granovetter, 1978), and production functions with critical mass proper-

ties (see Dodds and Watts, 2005; Heckathorn, 1993; Marwell and Oliver,

1993), we can derive the size of the critical mass required to initiate collec-

tive action. If actors in the population can form coalitions of the required

size, then mobilization will succeed.

Robustness analysis shows that the size of the critical mass (i.e., the

required coalition size, n) varies only slightly across changes in the mean

and standard deviation of V.19 However, changes in the population size (N)

can have a dramatic effect on the size of the critical mass needed to initiate

collective action. Figure 4 shows the change in the size of the critical mass

for populations ranging from N = 100 to N = 20,000. Results are shown for

four different distributions of V.

While increases in the population size (N) produce a corresponding

increase in the critical mass (n), the amount of increase depends upon the

jointness of supply of the public good. That is, it depends upon the degree

to which an increase in the size of the population that benefits from the pub-

lic good results in a decrease to each person’s utility from contributing to it.

For instance, a good with zero jointness is a raffle in which each person

who buys a ticket directly reduces everyone else’s chances of winning the

prize. As the size of the population buying tickets becomes very large, the

expected value of buying an additional ticket goes to zero. This presents a

bleak picture for large group collective action, since a sizable number of

people (10,000 or 20,000) would seemingly make any given individual’s

contribution not worth the cost. However, zero jointness is an extreme that

is empirically quite rare. Almost all goods have some level of jointness

(Marwell and Oliver, 1993). And, for some goods, like winning an election,

or passing a bill, jointness is quite high since, for example, the value of new
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legislation does not typically depend upon the size of the constituency.

Public goods such as creating parks, building bridges, cleaning up the

streets, and cleaning up the environment also typically have very high levels

of jointness. However, these forms of public good can also suffer from

‘crowding effects’, which may reduce the jointness of supply to less than

unity (Marwell and Oliver, 1993). For example, the benefits of clean rivers

may be reduced for those who worked to clean them up if the landscape

becomes overcrowded with a flood of new tourists.

In sum, the least hospitable conditions for collective action are situations

with zero jointness, where every additional person reduces the value of the

collective good for the others. The utopia is a jointness of one, where the

population can grow to infinity without affecting people’s interests in con-

tributing. Figure 4 demonstrates how the size of the critical mass, n,

changes with population size as a function of these changing conditions.

Figure 4. Change in critical mass with increasing population size. For four
different distributions of the valuation of the public good (V = 200, s = 50),
(V = 200, s = 200), (V = 800, s = 50), (V = 800, s = 200), the size of the critical mass
(n) increases with increasing population size N, shown ranging from
100 � N � 20, 000. The rate of increase in the critical mass changes dramatically
depending on the jointness of supply J, shown ranging from 0 � J � 0:5.
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The top line indicates zero jointness. As Marwell and Oliver (1993: 43–44)

note, ‘‘Olson’s group-size argument is clearly correct when the good has

zero jointness of supply. larger groups are much less likely to be provided

with the good than smaller groups.’’ Figure 4 shows that with zero jointness,

the required critical mass increases rapidly, growing from about eight peo-

ple for N of 100, to about 40 people for N of 300. And, for N of 500, the

critical mass approaches 100 people. For larger N, the size of the critical

mass observes a strict regularity of the form n = .5N; in other words, the

critical mass required is half the size of the population, regardless of N.

This relationship holds for all four distributions of V, which overlap to form

a single line in Figure 4.

This, too, seems disparaging for large group collective action. However,

small deviations away from zero jointness have a large impact on the size

of the critical mass required for mobilization. For a jointness of 0.1, the size

of the critical mass observes the ratio n = 0.19N. And, for a jointness of 0.2,

the ratio drops to n = 0.07N.20 More generally, Figure 5 shows that the rela-

tive size of the critical mass (n=N ) observes a very well-behaved exponen-

tial decay with the jointness of supply, well approximated by the curve

n=N = :5ekJ , where the decay constant k’� 9:697. The open circles in

Figure 5 show the ratio of n/N (for N . 1000), for increasing values of the

jointness of supply ranging from 0 � J � 0:5; the solid line plots the expo-

nential decay curve. As shown in the inset in Figure 4, this means that for a

collective action with a jointness of 0.5, the critical mass necessary to mobi-

lize a population of 20,000 people is a coalition that ranges in size from 8

to 25 people, depending on the distribution of V.

The dynamics of mobilization

The foregoing analyses show that for any population (N, �V , s) and collec-

tive good (J), we can determine if there is a critical mass, n, that can initiate

collective action. If there is, then the paramount factor for successful mobi-

lization is whether n individuals can form a coalition. This has the interest-

ing implication that distinct collective action problems that have different

characteristics, but which have the same n – e.g. (N = 1000, V = 600, s =

200, J = 0.3) and (N = 100, V = 500, s = 150, J = 0) both have n = 8 – will

have the same basic mobilization dynamics. If they can form coalitions of

size n, collective action will succeed.

Once a coalition forms to initiate collective action, bandwagon dynamics

take over. As more people cooperate, even more people become willing, and

the collective action grows (Finkel et al., 1989; Granovetter, 1978; Marwell
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and Oliver, 1993; Schelling, 1978). Figure 6 uses the strategy space diagram

to show how these collective dynamics unfold through changes in the strate-

gic interests of the population. Once the critical mass cooperates, changes in

the level of public goods create new incentives that move actors upward in

the strategy space. Actors who had been facing a prisoner’s dilemma or an

assurance game now find themselves in the privileged game, willing to

cooperate as individuals.

While this upward movement through the strategy space is qualitatively

the same for the class of production functions that generate critical mass

dynamics (cf. Dodds and Watts, 2004; Heckathorn, 1996), the long-term tra-

jectory of the population will differ based on the subsequent shape of the

production curve. For the S-shaped curve shown in Figure 1, after 50%

cooperation the curve starts to decelerate – reducing the incentives for fur-

ther cooperation. This causes the population to follow an arc-shaped

Figure 5. Exponential decay in critical mass size. For the four distributions shown
in Figure 2, and for population sizes of N . 1000. The ratio of the critical mass to
the population size, n=N (open circles), decays exponentially with linear increases in
the jointness of supply, J. The solid line plots the exponential decay curve with a
decay constant k = 29.647.
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trajectory, which moves later players down into the chicken game, and

results in less than full participation at equilibrium (this is described in

detail in Heckathorn, 1996). By contrast, purely convex functions

(Heckathorn, 1993) create a continuous upward movement resulting in com-

plete cooperation at the equilibrium (Heckathorn, 1993; Marwell and

Oliver, 1993).

Homophily

The success of the mobilization process illustrated in Figures 3 and 6 raises

an important question: Just because there are a sufficient number of individ-

uals willing to cooperate, does this necessarily mean that these people can

actually find one another to form a critical mass?

Figure 6. Bandwagon dynamics with local coalitions (N = 1000, J = 0.3,
�V = 600, s = 200, n = 8). The contributions of the critical mass in Figure 2 create
new incentives for other actors to cooperate, moving the population upward
through the strategy space.
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Research on collective action has long emphasized the importance of sol-

idarity (Fireman and Gamson, 1979; Hechter, 1987), collective identity

(Collins, 1993; Ferree, 1992), and shared commitment (Heckathorn, 1990;

Polletta, 1998) for the emergence of social movements, civic change organi-

zations, and revolutionary actions. More formally, this idea has been

expressed as the ability of likeminded people to coordinate in organizing

for the collective good (Heckathorn, 1993; Macy, 1990; Marwell and

Oliver, 1993). Thus, it is not surprising that homophily – the tendency of

people to interact with others who are similar to them – may be an impor-

tant factor in the mobilization of collective action (Centola, 2011; Kitts

et al., 1999; McPherson et al., 2001).

However, recent research on bandwagon dynamics in collective action

argues that while moderate amounts of homophily are beneficial, very high

levels of homophily can actually impede critical mass dynamics. ‘‘[T]he

optimal distribution of [interests] across networks would be a pattern where

agents associate with a certain proportion of others with similar [interests]

while keeping a certain level of friendship with others of discrepant [inter-

ests]’’ (Chiang, 2007: 67). The intuition behind these findings, which have

been repeated in other formal studies of norms and cooperation (Boyd and

Richerson, 2002; Goyal, 1996; Stark, 1996), comes from a network-centered

approach to social dynamics in which the benefits and costs of cooperation

are evaluated solely in terms of one’s network neighbors. These findings

show that excessive homophily can trap collective action in a single region

of the network, preventing local initiatives from successfully spreading

across the social space.

To see if these findings generalize for critical mass mobilization in large

groups, I embed the actors from the above coalition-based model into a

social network, and then incrementally alter the level of homophily in the

network.21 At the same time, I systematically alter the size of the critical

mass, which allows us to identify the effects of homophily on critical mass

mobilization across a range of different start-up problems. I compare the

smallest possible coalitions (n = 2) with larger coalitions (n = 4, 6, 8, and

12). This provides me with a means for identifying the interaction effects of

coalition size with homophily.

To isolate the effects of homophily, I alter the size of the critical mass, n,

using the valuations of the public good (�V , s), while keeping the popula-

tion size fixed at N = 1000, and the jointness of supply fixed at J = 0.3. As

shown in Figure 4, the critical mass does not vary greatly with changes to

the distribution of V. To investigate the interaction of homophily with the
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size of the critical mass over the interval n = [2, 12], I examine distributions

over the parameter range (400 � �V � 1500, 5 0 � s � 400).

To create the social network, actors are embedded into a simple lattice

structure with ‘Moore neighborhoods’, in which each actor’s ‘neighborhood’

consists of its eight neighbors on a two-dimensional grid, four on the rows

and columns (North, South, East, and West) and four on the diagonals.

Moore neighborhoods create a spatially constrained social network, with

high levels of clustering (i.e., network transitivity), which is useful for study-

ing the dynamics of local interaction (Centola et al., 2005; Centola and

Macy, 2007). The number of neighbors that each person has, z, can then be

increased from 8 to 24 to 48 (and so on) by increasing the neighborhood

radius r, where z = 4r(r + 1). For the following analysis, I use r = 2, which

gives each node z = 24 neighbors. While the public good is shared over the

entire population (i.e., the production function is ‘global’), actors can only

build coalitions using their 24 direct social contacts. Thus, in general, z must

be greater than or equal to the minimum coalition size (i.e., z � min (p)) in

order for actors to be able to build successful coalitions.

Homophilous interaction is modeled by controlling the correlation of

actors’ valuations of the public good, V, in the social network. When homo-

phily is zero, there is no correlation between neighbors’ valuations of the

public good (r’0). At the other extreme, when homophily is very high,

neighbors have highly correlated values of V, meaning that every actor’s

neighbors have valuations of the public good that are similar to hers

(r’0:9).

Figure 7 shows the frequency with which critical mass collective action

is successful for five different coalition sizes, ranging from the smallest pos-

sible coalitions of n = 2 to larger coalitions of n = 12 (averaged over 100

runs of the model with identical settings).22 The results show that there is

an increasing, positive effect of homophily on mobilization. For every coali-

tion size, the more homophilous that ties are, the greater the likelihood of

successful collective action.

As the size of the minimum coalition increases, mobilization becomes

increasingly dependent upon homophily. This is because as coalition size

increases, it becomes more unlikely that n individuals with strong interests

in the collective action will be randomly located within the same part of the

social network. For coalitions of n = 2, randomly finding actors to coordi-

nate with is difficult, but not impossible. But, without homophily, randomly

finding seven or eight other actors to coordinate with is nearly impossible.

The larger the coalition size, the greater the importance of homophily in

facilitating the formation of critical mass.23

24 Rationality and Society 25(1)



The reason that these results present a noticeable departure from previ-

ous network studies of homophily in bandwagon dynamics (Boyd and

Richerson, 2002; Chiang, 2007; Chwe, 1999) is that we are studying large

group collective action. In this study, the collective good is divided over the

entire population. By contrast, in many network-based accounts of collec-

tive action (Centola and Macy, 2007; Chiang, 2007; Chwe, 1999; Kim and

Bearman, 1997; Macy, 1990), models assume that individuals evaluate their

contributions as if the entire collective good were shared exclusively among

the local neighborhood of z actors.

This assumption has two consequences. First, it makes the size of the

entire population irrelevant, and thus the collective action problem easier to

solve. Since the good is only divided over the local neighborhood, the popu-

lation can increase without bound without affecting actors’ willingness to

contribute. However, this formalization of collective action fails to address

the original concern voiced by Olson (1965), and later by Kim and Bearman

Figure 7. Positive effects of homophily (N = 1000, J = 0.3, averaged over 100
realizations). Parameter settings correspond to five different critical mass sizes (n =
2, �V = 1000 , s = 250), (n = 4, �V = 700, s = 260), (n = 6, �V = 500, s = 280), (n = 8,
�V = 500, s = 240), (n = 12, �V = 250, s = 280). Frequency of successful mobilizations
are shown for increasing levels of homophily. As homophily increases, so does the
success of critical mass collective action.

Centola 25



(1997), that the larger the group is, the smaller any given individual’s contri-

bution is.

Second, this assumption limits the value of homophily. Because the col-

lective good is not shared over the entire population, actors cannot find out

about people’s contributions unless they are recruited through their social

networks. Since there is no public awareness of the collective good, mobili-

zation depends upon new recruits having local contact with network neigh-

bors who have contributed. Consequently, if high-interest people only

interact with other high-interest people, their excessive homophily prevents

news of their efforts from helping to recruit lower-interest people in the net-

work. Thus, too much homophily causes the collective action to get stuck in

one region of the network, from which it cannot escape. This is the reason

why previous formal studies of collective action in social networks have

found negative effects of high levels of homophily.

By contrast, while large group collective action is a harder problem to

solve, it also benefits more from homophily. In large group collective action,

the public good is shared equally over the population. Because of this, there

is public awareness of what people are doing, and how it affects the collec-

tive good. If grassroots organizers put together a campaign to clean up the

neighborhood, the activists working in the streets will let others know that

their efforts are under way (Gould, 1993). Similarly, efforts to get out the

vote (Sandler, 1992), to ban smoking from public restaurants (Heckathorn,

1993), or to start a strike (Klandermans, 1988), are not limited to people’s

immediate social contacts. Once a core group of activists mobilize behind a

cause, they publicize their efforts, letting everyone know that they are con-

tributing to the collective good, and that others’ contributions will make a

difference (Marwell and Oliver, 1993; Opp and Gern, 1993; Schelling,

1978). Because of this public signal, the efforts of a homophilous few can be

successful at mobilizing a large majority of people. And, the more homophi-

lous the activists are, the greater the chances that they can coordinate to initi-

ate a mass action.

Network structure

Beyond homophily, another important second way that neighborhood com-

position can be altered is by changing the topology of the social network.24

The above homophily model uses highly clustered lattice networks, in which

social interaction is limited by spatial proximity. Some empirical research

has shown that clustered, spatially constrained social networks can be very

important for the mobilization of social movements (Centola, 2010; Gould,
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1996; Hedstrom, 1994). However, a large literature on collective action

(Chwe, 1999; Granovetter, 1973; McAdam and Paulsen, 1993; Macy, 1991)

and collective behavior (Newman, 2000; Watts, 1999, 1999; Watts and

Strogatz, 1998) has shown that weak ties, which disrupt the local structure

of spatial networks by creating links between otherwise remote actors, can

also be beneficial for the spread of cooperation.

To test the effects of network structure on the dynamics of collective

action, I extend the above model to study how clustered networks versus

weak ties affect critical mass formation. To do this, I use a random rewiring

model (Centola and Macy, 2007; Watts and Strogatz, 1998), in which ran-

domly selected ties in the spatial network are broken and then re-attached to

randomly selected members of the population, creating ‘shortcuts’ across

the lattice. The rewiring model uses the parameter q (0 � q �1) to deter-

mine the probability that ties will be randomly rewired. For q = 0, no ties

are rewired and the network is a regular lattice with Moore neighborhoods,

while for q = 1 every tie is rewired, making the social network into a ran-

dom graph (Watts and Strogatz, 1998). As the parameter q increases, there

are more weak ties in the social network, which reduces local structure and

transforms the social topology into a small world network (Centola and

Macy, 2007; Watts, 1999).

The results presented in Figure 8 show the three-way interaction between

coalition size, homophily and network structure. I studied this interaction by

testing the five different coalition sizes used above (n = 2, 4, 6, 8, and 12)

both with homophily (r’0:9), and without homophily (r’0), over the

full range of network structures, ranging from a clustered spatial lattice to

a random network with abundant weak ties (0 � q �1). As above, the

coalition size is determined by selecting corresponding distributions of V.

Using a population of 1000 actors and a jointness of supply of J = 0.3,

each of these distributions place approximately n actors in the assurance

game region of the game space. Figure 8 shows the effects of network

structure on the mobilization process for coalitions with homophilous

(solid lines) and non-homophilous (dotted lines) ties. The y axis in Figure

8 shows the frequency of successful mobilization attempts, while along

the x axis q increases from 0 to 1, indicating that the network structure

moves from clustered neighborhoods to abundant weak ties.

For very small coalitions with homophilous ties (n = 2, solid line),

increasing the number of weak ties does not dramatically affect the success

of critical mass mobilization. Across the range of network structures, actors

with homophilous relationships are able to find at least one other actor with

a similar incentive structure, giving a high probability of success to small
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coalitions. For slightly larger coalitions (n = 4), network rewiring has a

more noticeable negative effect on the probability of success. And, for even

larger coalitions (n = 6), as there are more weak ties in the network we

observe a significant effect. Adding random ties reduces the frequency of

successful mobilizations. For coalitions of n = 8, success rates drop from

more than 80% success in the spatially structured network to nearly zero in

the network with abundant weak ties. This striking decline in mobilization

frequency comes from the fact that as the network is randomized, transitiv-

ity is reduced, making it less likely that assurance game players who are

Figure 8. Effects of network structure, coalition size, and homophily on critical
mass (N = 1000, J = 0.3, averaged over 100 realizations). The frequency of
successful mobilizations shown for the same distributions of V and coalition sizes
shown in Figure 6 (n = 2, n = 4, n = 6, n = 8, and n = 12), both with homophily
(r = 0:9) and without (r = 0). The x axis shows the structure of the social network,
ranging from q’0 (regular lattice) to q = 1 (random network). For the smallest
coalitions with homophily (n = 2, r = 0:9; solid line), there is no significant effect of
rewiring the network on the success of mobilization. However, as coalition size
increases (n � 4, r = 0:9; solid lines), there is a negative effect of increasing the
fraction of weak ties on mobilization. When there is no homophily, larger coalitions
cannot mobilize at all (n � 4, r = 0; dotted lines). Very small coalitions can have
modest success even in the absence of homophily (n = 2, r = 0, dotted line).
Increasing weak ties can slightly improve the success of mobilization in these cases.
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neighbors with each other, will also have neighbors in common. While

homophily increases the likelihood that actors with cooperative interests

will have similar neighbors, increasing q makes it less likely that a critical

mass of these actors will all be socially connected to one another. As the

number of weak ties increases, the network becomes too diffuse to ensure

the local clustering necessary to mobilize larger coalitions.

For non-homophilous ties, larger coalitions are even more difficult to

mobilize. When there is no homophily, mobilization fails entirely for coali-

tions with n . 2, regardless of the network structure. This is because in a

large population, it is unlikely that the small fraction of interested coopera-

tors will be randomly connected with each other. However, for the smallest

coalitions (n = 2, dotted line), each person only needs to find a single part-

ner to organize a collective action, allowing these coalitions to succeed even

without homophilous ties. As the spatial structure of the local neighbor-

hoods is perturbed by the addition of weak ties, the only effect is that as q

approaches 1 the mobilization frequency increases slightly. Thus, when the

coalitions are small – only requiring a single other person to initiate the

action – having more shortcuts across the social space provides actors with

more opportunities to find another player whose interests correspond to

their own (Granovetter, 1973; Macy, 1991). However, these results do not

generalize to larger coalitions. The larger the coalitions, the more that mobi-

lization depends upon homophilous interaction in clustered networks.

These results indicate that the structure of the social network interacts

with both homophily and coalition size in the dynamics of critical mass

mobilization. The implications for the ‘strength of weak ties’ are divided.

For the smallest coalitions, where only a single contact is required in order

to make both individuals willing to act, weak ties seem to either not affect

mobilization, or to weakly improve the mobilization process. These results

are consistent with the findings of Granovetter (1973) and Macy (1991).

However, these effects are not very pronounced. The stronger effect is for

larger coalitions. For greater n, the results weigh in favor of empirical find-

ings stressing the importance of spatial networks (Gould, 1996; Hedstrom,

1994) and strong ties (McAdam and Paulsen, 1993) for local organizing and

recruitment to collective action. This also provides formal support for Opp

and Gern’s (1993) findings that homogenous, clustered networks, in which

trust can be established, can play a significant role in the mobilization of col-

lective action. Taken together, these results suggest that the required size of

the critical mass has significant implications for the structural conditions that

are necessary to support mobilization. Consistent with recent formal and

empirical work on ‘complex contagions’ (Centola, 2010; Centola and Macy,
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2007), these results suggest that the more difficult the collective action prob-

lem is, the more that mobilization depends upon clustered social networks.

Conclusion

Formal models of collective action have traditionally used an N-person

framework for studying large group collective action (Bonacich et al., 1976;

Hamburger, 1973; Hardin, 1982; Olson, 1965), in which it is unlikely that

an individual’s solitary contribution will make a sufficient impact to make

cooperation rational. This has led to a by-product theory (Gould, 1993;

Olson, 1965) of social cooperation in which the use of selective incentives,

and not an interest in the public good, is the principle mechanism for

explaining cooperative behavior. Critical mass theory (Marwell and Oliver,

1993) offers an alternative to by-product theory, but requires an explanation

of how critical mass mobilization can emerge endogenously among equal

resource actors who are mired in the suboptimal equilibrium of universal

defection. Network-based approaches have attempted to solve this problem,

but most of these models eliminate group size from the individual calculus,

and thus avoid the large group problem altogether.

I present a coalition-based model of collective action that solves the

problem of critical mass in large groups. My results show that the formation

of coalitions can change the strategic incentives of individuals mired in an

N-person prisoner’s dilemma. Self-organization into coalitions can create

cooperative incentives that make the formation of a critical mass rational,

allowing interested actors to initiate bandwagon dynamics that produce suc-

cessful collective action. Further, my results show that high levels of homo-

phily can significantly benefit critical mass mobilization, and that weak ties

can be detrimental to mobilization as the required coalition size increases.

These results help to clarify conflicting claims about the roles of social net-

works (Gould, 1996; Granovetter, 1973; Hedstrom, 1994; Kitts, 2000) and

homophily (Boyd and Richerson, 2002; Chiang, 2007; Kitts et al., 1999;

McPherson et al., 2001) in social movement dynamics, and suggest that

there is no generic ‘ideal network’ for mobilizing mass action. The advan-

tages of various structural resources, such as clustered neighbors or weak

ties, depend upon the needs of the particular mobilization.
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Notes

1. There is some debate about whether there is a ‘critical mass theory’. Marwell

and Oliver refer to their (1993) book on critical mass collective action as ‘a

micro-social theory’. In that spirit, I refer to the idea that critical mass dynamics

can explain voluntary collective action in large groups as ‘critical mass theory’.

The definition of critical mass used here is the same as that used by Schelling

(1978), Granovetter (1978), Rogers (1995), Dodds Watts (2004, 2005), and

sometimes by Marwell and Oliver (1993); viz., the critical mass is the number

of people that need to adopt a behavior in order for that behavior to keep

spreading. Related work that explores a similar concept of critical mass, but

falls outside the scope of this study, includes work following from Macy’s

(1991) learning-theoretic account, in which critical mass represents a level of

collective action that is sufficient to make cooperation self-sustaining. By these

definitions, below the critical mass, any initial adopters quickly drop out and

there is no bandwagon dynamic. However, Marwell and Oliver (1993) have

another definition of critical mass, not used here: the critical mass is a group of

high-resource contributors who can produce all or most of the collective good

for everyone.

2. Marwell and Oliver (1993) show that an organizer agent can solve this problem

when the distribution of ties, interests, and resources coincide to give the person

with the most individual ties access to the greatest resources in the population.

This solution emphasizes the importance of resource heterogeneity (including

social, human, and financial capital) for successful collective action.

3. Thank you to an anonymous reviewer for clarifying this point about resources.

4. Homophily is the principle that people with similar traits are more likely to be

socially connected than people with dissimilar traits. Different mechanisms,

such as selection and influence, can both play a role in producing this outcome.

I will not focus on the particular mechanism here, only on the likelihood of con-

nected actors having similar valuations of the public good.

5. The value of weak ties for mobilization is based on their structural role as

‘long-distance’ ties in the network, which reduce clustering and connect remote

regions of the social space (Centola and Macy, 2007; Granovetter, 1973).

Consistent with Watts and Strogatz’s (1998) small world model, and Centola

and Macy’s (2007) complex contagions model, in the present discussion I use

the term ‘weak ties’ to refer to structurally ‘long ties’. Affect is not manipu-

lated in the present study.

6. The production function maps levels of contribution onto levels of goods pro-

duction. This is discussed in detail below. (See Marwell and Oliver, 1993, for

an extensive discussion of production functions.)

7. It is also possible for some people to have thresholds that are so high that they

would never cooperate. The N-person assurance game works the same even in

populations with these non-participants, but the equilibrium level of coopera-

tion is less than 100%.
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8. Work by game theorists such as Schofield (1975), Ellickson (1973), Buchanan

(1965) and others operate outside of the narrow one-versus-all framework, and

address the use of coalitions to solve collective action problems. However,

these approaches either use side payments within coalitions to organize cooper-

ation (Schofield, 1975), or restrict cooperative behavior to a small subset of the

population, such as jurisdictions (Ellickson, 1973) or clubs (Buchanan, 1965),

thereby introducing excludability.

9. For robustness, I also explored these dynamics for alternative production func-

tions, and found no significant deviations from these results.

10. b.1 is a shape parameter for the production curve. For the results presented

below, I use b = 10 (Heckathorn, 1996; Macy, 1990, 1991)

11. More technically, Dodds and Watts (2005) define the necessary conditions for

critical mass as the need for the production function to have a positive second

derivative near the origin; that is, returns accelerate as more people the join the

action (cf. Marwell and Oliver, 1993). This condition holds when payoffs for

cooperation are determined by the marginal impact that each person’s coopera-

tion has on the public good. This is the standard model of returns used in col-

lective action (Heckathorn, 1996; Marwell and Oliver, 1993; Olson, 1965).

12. The expression ViL in equation (2) can be expanded to read ViL� L(0), where

L(0) is the level of public goods before the coalition acts. The abbreviated form

shown in equation (2), however, is appropriate at start-up, when L(0) = 0.

13. For some distributions of V that I study, a small fraction of actors may have

negative valuations of the public good. This does not change the dynamics, but

it does imply that the equilibrium level of cooperation will be less than 100%

(see Note 6).

14. This corresponds to a ‘weakest link’ structure because every coalition member

must prefer mutual cooperation to unilateral defection in order for the collective

player to prefer mutual cooperation; that is, the weakest link breaks the chain.

15. Figure 1 also shows that participation is less attractive at the end of the produc-

tion curve when so many people have participated that additional contributions

will not have much impact (see discussion below). See also Marwell and Oliver

(1993) and Heckathorn (1996) on ‘suboptimal’ public goods production.

16. See Heckathorn (1996) for a proof of the completeness of the strategy space.

17. An individual’s location in a region of the strategy space does not indicate that the

individual is in a symmetric game, but rather that the individual’s incentive struc-

ture corresponds to an ordering of outcomes associated with a given game type.

18. Subsequent analyses examine the effects of network structure on mobilization.

19. Other model parameters, such as network structure, do not affect the minimum

coalition size. As discussed below, the distribution of interests can cause some

modest variation in coalition size, but the dominant effect comes from the val-

ues of N and J.

20. Figure 4 also shows that while these ratios are approximate for smaller values

of N, they converge in the limit of large N.
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21. Homophily is implemented using a global smoothing function (Garcı́a-Ojalvo

and Sancho, 1999), which iterates over the population and attempts to create a

smooth, single-peaked distribution of values in the network (i.e., all high valued

individuals in the same neighborhood). The algorithm iterates until the correla-

tions between neighbors reach the level that is specified by the Pearson’s corre-

lation coefficient (r).

22. Coalition sizes are determined by selecting the corresponding distributions of

V: (n = 2, �V = 1000, s = 250), (n = 4, �V = 700, s = 260), (n = 6, �V = 500,

s = 280), (n = 8, �V = 500, s = 240), (n = 12, �V = 250, s = 280). Successful

coalition formation is harder to achieve as n approaches z. For large, sparse

networks (i.e., z \\N), altering the size of the neighborhoods does not qualita-

tively affect these results.

23. These results require clustering in the network, but do not require that the clus-

tered network be a lattice.

24. Earlier work on social networks in critical mass dynamics (Marwell et al.,

1988) shows that: (1) network density and centrality allow high-resource indi-

viduals to be more easily mobilized; (2) high-influence individuals can be more

effective in mobilization (Gould, 1993; Kim and Bearman, 1997); and (3) imi-

tation and homophily can affect mobilization in complete graphs (Kitts et al.,

1999). The present study assumes actors have equal resource and influence,

and are embedded in large networks with interactions limited to immediate

neighbors. I focus on how the overall topological structure of the network (e.g.,

clustering and path length) facilitates or inhibits the emergence of critical mass.

See Centola (2010), Centola et al. (2007), Centola and Macy (2007), Watts and

Strogatz (1998).
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Appendix 1

Formal definition of the model
Production function and payoffs. Equations (1)–(6) governing the production

function and the individual payoffs are stated in the text. They are repeated

here for completeness. They are as follows:

36 Rationality and Society 25(1)



Production function:

L(p) =
1

1 + e
(:5� p + d

N1�J )b
ð1Þ

Individual payoff:

Ui = ViL� CiK ð2Þ

Payoff for mutual cooperation:

Ri = ViL(n)� K ð3Þ

Payoff for unilateral cooperation:

Si = ViL(1)� K ð4Þ

Payoff for unilateral defection:

Ti = ViL(n� 1) ð5Þ

Payoff for mutual defection:

P = 0 ð6Þ

The strategy space. The strategy space shown in Figures 2, 3, and 6 has three

axes. The z-axis is based on the value Ui from equation (2). The x and y axes

correspond to the changing shape of the production function in terms of two

parameters, F1 and F2 (cf. Heckathorn, 1996). The changes in the values of

F1 and F2 indicate the changing interdependence of actors in a coalition

(Heckathorn, 1993; Marwell and Oliver, 1993). F1 indicates the effect of the

first member’s decision whether to contribute, on the decisions made by the

rest of the coalition members.

F1 =
ln L(n)�L(1)

L(n)�L(0)

� �
ln ( n�1

n
)

ð8Þ

F2 is the complement of F1. F2 reports the effect of the decisions made by

the first n–1 players in the coalition on the final player’s decision. Taken

together, F1 and F2 describe the interdependence between individual and

group decision-making within a coalition.
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F2 =
ln L(n)�L(n�1)

L(n)�L(0)

� �
ln ( 1

n
)

ð9Þ

The planes in Figures 2, 3, and 6 show where two outcomes are equally val-

ued (S = P, T = R, and R = P), consequently each of the five regions bor-

dered by the planes corresponds to a unique ordinal ranking of T, R, P,

and S. Since this ordinal ranking determines the structure of individual and

collective interests (or ‘game type’), each region of the strategy space in

these figures corresponds to a unique strategic situation.

The decision model. As discussed in the text, an active individual i plays a

2x2 game against the remaining n–1 members of the coalition aggregated

into an alter j. I use a ‘weakest link’ rule for determining j’s strategy, which

aggregates the n–1 players’ interests as shown in equations (10) and (11).

Rj =
Xn�1

k = 1

H(Rk � Tk), k 6¼ i ð10Þ

In order for j to prefer mutual cooperation to unilateral defection (Rj = n–1),

every member of j must prefer mutual cooperation to unilateral defection.

Similarly, every member of the coalition must have Sk . 0 in order for j to

prefer unilateral cooperation (Sj=n–1) over mutual defection (Sj\n–1), as

shown in equation (11).

Sj =
Xn�1

k = 1

H(Sk), k 6¼ i ð11Þ

The active player, i’s, decision whether to cooperate or defect is based the

payoffs for individual and mutual cooperation or defection, as described in

the text. The decision algorithm is provided in equation (12).

Ci =

0 if Ti.Ri and Pi.Si

1 if Ri.Ti and Si.Pi

if Ri.Ti and Pi.Si :
1 if (Rj = n� 1)

0 otherwise

�
if Ti.Ri and Si.Pi :

0 if (Sj = n� 1)

1 otherwise

�

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ
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The simulation model. Each run of the simulation model specifies a number

of agents (N), a jointness of supply (J), and a distribution of valuations of

the public good (V , s). The model initializes each agent by drawing a ran-

dom value Vi from the distribution of V, and setting the agent’s state to Ci =

0. The value of n (coalition size) is the same for all agents, and it is deter-

mined by the calculation given in Appendix 2.

The model iterates as follows:

1. Select an agent i at random from the population.

2. Agent i randomly selects n–1 individuals from the population.

In the fully connected network, agents are randomly chosen from the

population.

In the local network model, agents randomly select the n–1 players from

their immediate network neighborhood.

3. Each agent iterates through the calculation of their individual best

options using equations (1) through (6), and (10) through (12). Each

agent decides their best option for cooperation or defection.

4. The active agent i then calculates the outcome of each player’s

decision.

If all n players including i agree to cooperate, then the outcome of the

game is R, mutual cooperation.

If only i agrees to cooperate, then i cooperates and everyone else defects.

If everyone else agrees to cooperate, and i does not, then everyone else

cooperates and i defects

If no one agrees to cooperate, then everyone defects.

5. Once this action is taken, the model iterates again from step 1.

Appendix 2

Solution to the size of the critical mass

Given a production function L(p), and a distribution of interests in participa-

tion f (V ), we are required to find the minimum coalition size, p, such that

for p individuals mutual cooperation, Ri = ViL(p)� K, dominates unilateral

defection, Ti = ViL(p � 1).

For an individual i, the cooperation point where Ri . Ti occurs when

ViL(p)� K.ViL(p � 1) ð13Þ
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which can be rewritten as

L(p)� L(p � 1).
K

Vi

ð14Þ

For a population of size N, the size of the minimum coalition to create criti-

cal mass is given by

min (p) s:t:
XN

i = 1

H L(p)� L(p � 1)� K

Vi

� �" #
� p ð15Þ

where the Heaviside function H(x) is given by

H(x) =
0 if x � 0

1 if x.0

�
ð16Þ

Equation (15) states that the minimum coalition p, is the smallest coalition

that is sufficient to give p individuals incentives for mutual cooperation over

unilateral defection.

To provide an example, let us take the production function given in equa-

tion (1).

L(p) =
1

1 + e
(:5� p + d

N1�J )b

We set d = 0 since there is zero cooperation at the start, which gives us the

equation:

min (p) s:t:
XN

i = 1

H
1

1 + e
(:5� p

N1�J )b
� 1

1 + e
(:5� p�1

N1�J )b
� K

Vi

� �" #
� p ð17Þ

Assuming, for example, N = 1000, J = 0.3, b = 10, and a normal distribution

of thresholds with �V = 600, s = 200, this gives us a minimum coalition size

of p = 8. Given the stochastic nature of the distribution, this value is approx-

imate, changing slightly with different realizations of the threshold distribu-

tion. As N becomes large, this variation between realizations of distribution

becomes smaller, and the prediction becomes more exact.
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