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A class of inhomogenously wired networks called ‘‘scale-free’’ networks have been
shown to be more robust against failure than more homogenously connected expo-
nential networks. The robustness of scale-free networks consists in their ability to
remain connected even when failure occurs. The diffusion of information and
disease across a network only requires a single contact between nodes, making
network connectivity the crucial determinant of whether or not these ‘‘simple
contagions’’ will spread. However, for ‘‘complex contagions,’’ such as social move-
ments, collective behaviors, and cultural and social norms, multiple reinforcing
ties are needed to support the spread of a behavior diffusion. I show that scale-free
networks are much less robust than exponential networks for the spread of complex
contagions, which highlights the value of more homogenously distributed social
networks for the robust transmission of collective behavior.
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Tolerance against failures and errors is an important feature of many
complex networked systems (Albert et al., 2000; Hartwell et al., 1999;
Holme and Kim, 2002). It has been shown that a class of inhomogen-
eously wired networks called ‘‘scale-free’’ (Albert et al., 2000; Barabasi
and Albert, 1999; Barabasi et al., 1999) networks can be surprisingly
robust to failures, suggesting that socially self-organized systems such
as the World Wide Web (Huberman and Adamic, 1999), the Internet
(Cohen et al., 2000), and other kinds of social networks (Redner,
1998) may have significant tolerance against failures by virtue of
their scale-free degree distribution. I show that this finding only
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holds on the assumption that the diffusion process supported by the
network is a simple one, requiring only a single contact in order for
transmission to be successful. For complex contagions (Centola et al.,
2007; Centola and Macy, 2007), such as the spread of cultural norms
(Axelrod 1997), collective behavior (Granovetter, 1978) or cooperation
(Nowak and May, 1992; Riolo et al., 2001), multiple sources of
reinforcement are needed for transmission to be successful (Centola
and Macy, 2007; McAdam and Paulsen, 1993). I find that on networks
with high levels of local clustering, as is typical of social networks
(Newman and Park, 2003; Watts and Strogatz, 1998; Keeling, 1999),
a scale-free degree distribution makes the social topology much more
sensitive to failure due to accidents and errors than having a more
homogeneous, exponential degree distribution.

Scale-free networks are characterized by a power law decay in the
degree distribution, such that PðkÞ� kg, which gives some nodes very
large degrees while most others have very small degrees. The Web and
the Internet have been shown to have scale-free properties (Albert
et al., 2000; Barabasi and Albert, 1999); however, many examples of
social networks, such as scientific collaboration networks (Newman
2001) and friendship networks (Newman, 2003), are frequently not
scale-free but do have right-skewed distributions with exponential
decay (Newman, 2003; Strogatz, 2001). Networks with exponential
degree distributions PðkÞ� expð� k

cÞ provide moderate ‘‘hubbiness’’
while also having exponential decay for large k.

Exponential and scale-free networks are compared by using net-
works of the same size (N¼ 10,000), average degree (<k>¼ 4), and
level of clustering (CC¼ .25) (Newman and Park, 2003; Watts and
Strogatz, 1998; Klemm and Eguiluz, 2002). Error tolerance is tested
by randomly removing a fraction, f, of nodes from the network (Albert
et al., 2000) and then measuring the average size of cascades, S (the
number of nodes reached by a contagion), which originate from a ran-
domly chosen seed neighborhood. Cascades of complex contagions are
measured by assigning each node a threshold of adoption (t¼ 2=k),
such that each node must have at least two neighbors activated in
order to become activated (Centola and Macy, 2007). A randomly cho-
sen ‘‘seed’’ neighborhood (one individual node and all of its neighbors)
is then activated to initiate the cascade dynamics.1 This process is
repeated over 1,000 realizations to produce an ensemble average
cascade size, <S>, for each value of f.

1Asynchronous updating with random order and without replacement eliminates
potential order effects and guarantees that every node is updated within a round of
decision-making, which is defined as N time-steps.
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In order for complex contagions to propagate across a social
network, the network not only must remain connected but must
also have sufficient local structure in the form of connected clusters
with triadic closure to support social reinforcement from one cluster

FIGURE 1 Spread of simple and complex contagions on scale-free and
exponential networks. (a) Average size of cascades of complex contagions as
fraction f of nodes are removed from a clustered scale-free network by random
failure (dotted line) or targeted attack (solid line), and the connectedness of the
network (solid line with circles) as the size of the largest connected component.
(b) Minimally complex contagions require that each node have 2 neighbors
activated in order to become activated. This can cause ‘‘bottlenecks’’ where a
contagion cannot spread from activated nodes (shown in gray) to reach other
nodes in a connected network (shown in white). (c) Average size of cascades
of complex contagions on an exponential network with random failure
(dotted line) and targeted attack (solid line), and size of the largest connected
component (solid line with circles).

66 D. Centola

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
e
n
t
o
l
a
,
 
D
a
m
o
n
]
 
A
t
:
 
0
8
:
3
6
 
8
 
J
a
n
u
a
r
y
 
2
0
0
9



to the next (Centola and Macy, 2007). When a scale-free network suf-
fers node attrition (Fig. 1a), it quickly reaches a critical fraction of
removed nodes, fc� .0002, above which cascades can only reach less
than half of the network. For slightly higher values of f, cascades fail
to spread beyond the immediate region of the seed neighborhood
(<S>< 1000). This is independent of whether nodes are removed by
targeted attack (removing the most connected nodes first, solid line
in Fig. 1a) or by random failure (dotted line in Fig. 1a). At the critical
transition fc, the scale-free network remains connected, as shown by
the average size of cascades of simple contagions, <S> �N. How-
ever, complex contagions exhibit sensitivity to failure because small
breaks in the network reduce crucial overlap between the minimally
connected neighborhoods, resulting in the inability of multiple signals
to pass between them (Centola et al., 2007). This weakness is endemic
to clustered scale-free networks because of the large fraction of the
population with minimal connectivity.

The exponential network has more nodes with moderate degree;
thus, there are many redundant pathways for local reinforcement,
making the network much less sensitive to failure. The formation of
‘‘bottlenecks’’ (illustrated in Fig. 1b) limits complex contagions to
reaching only 70% entire network even with zero failure (shown in
Fig. 1c). Despite this, even with 5% random failure ( f¼ .05, dotted line
in Fig. 1c) cascades on exponential networks can still reach more than
50% of the network. Targeted attacks (solid line in Fig. 1c) have a
much greater impact on the exponential network, eventually causing
cascades sizes to drop to zero; however, exponential networks do not
have a critical transition for complex contagions and are robust to
targeted attacks up to losing the 100 most connected nodes (1%,
f¼ .01). This robustness of the exponential degree distribution for
the diffusion of complex contagions may explain its relative abundance
in social networks, which are powerful pathways for cultural trans-
mission and social reinforcement despite continual attrition due to
death and mobility.
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