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Extended Materials & Methods 

Experiment Design.  Each trial of the study consisted of an experimental design that compared 

baseline responses to socially influenced responses within each individual and group. As subjects 

came into the study, they were randomized to one of the groups, either to a decentralized network, 

a centralized network, or a control condition. If subjects were randomized to one of the two 

network conditions, then they were randomly assigned to one node in the network, and they 

maintained this position throughout the experiment. If subjects were assigned to the control 

condition, they did not receive any social information, and were simply given the chance to revise 

their responses in isolation. In each trial, all networks had the same number of subjects (N=40). 

By allowing individuals to make baseline, independent responses and then permitting them to 

make revisions after receiving social information, we can examine the effects of social influence 

on collective judgments. Our design also allows us to test how network centralization affects the 

wisdom of crowds.  

 

Fig. S1. Schematic of the experiment. Each subject is randomly assigned to a condition. If the 

condition contains a network, then the individual is randomly assigned to a single node within the 

network. 
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Subject Recruitment.  Participants in our study were recruited via the World Wide Web to be 

players in an “Intelligence Game.”  Participants for questions soliciting count-based responses 

were recruited via online message boards advertising the opportunity to make money by 

participating in online experiments.  Participants for questions soliciting percentage-based 

responses were recruited by sending an advertisement and a link for this experiment to participants 

who had previously completed a “HIT” on the Amazon Turk platform in which they registered to 

participate in studies with our research group.  Upon arriving at the study website, participants 

viewed instructions on how to play the intelligence game, and waited while other subjects arrived.  

When a sufficient number of subjects arrived, all subjects were randomized to a condition and the 

trial would begin. Responses for count-based questions were collected over a 319-day period, July 

28, 2015 through May 24, 2016 over which time online advertisements were posted to attract 

subjects to participate in the study. Responses for percentage-based questions were collected over 

a 4-day period from November 17, 2016 to November 20, 2016.   

 

Subject Experience During the Experiment.  To isolate the causal effect of social influence, the 

interface in each network condition was identical. For each question, participants first provided an 

independent response without any social information. The experimental interface of this 

independent round is depicted in Fig. S2. Then, subjects in network conditions were shown the 

average (mean) response of their network neighbors, and were given a chance to revise their 

answer. This design ensured that users in both network conditions received identical user 

experiences. The screenshot of the first chance to revise after social exposure (Round Two) is 

shown in Fig. S3. This second step was repeated, providing a total of three answers from each 

individual for a given question, and the screenshot of the final chance to revise after social 
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exposure (Round Three) is shown in Fig. S4. This entire process was repeated for four unique 

count-based or five unique percentage-based questions, resulting in a total of twelve count-based 

or fifteen percentage-based responses from each subject. Subjects had one minute to provide each 

response, and the entire experiment lasted for twelve minutes. To motivate subjects, rewards were 

based on the accuracy of their answers. Subject payment was based on their error as a percent of 

the true value.  Answers which were exactly correct earned the maximum payout ($2.50).  Answers 

which were within 1% of true value received $1.25; within 10%, $1.00; within 15%, $0.75; within 

20%, $0.35; within 30%, $0.25; within 90%, $0.15.  Answers more than 90% from the true value 

did not earn any payment.  This payment schedule was not observable to participants, who were 

only told "The more accurate your answers, the more you win!" This design allows us to examine 

the effect of social influence on independent beliefs.  Participants in the control condition were 

provided with an identical interface, but without social information.   

 

 
 

Fig. S2. Screenshot of the experimental interface in Round One (baseline). 
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Fig. S3.  Screenshot of the experimental interface in Round Two (first chance to revise after 

social exposure). 

 

 

 

 

Fig. S4. Screenshot of the experimental interface in Round Three (final chance to revise after 

social exposure). 
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Estimation Tasks.  Estimation tasks were taken from diverse domains, including health, 

economics, and arithmetic estimations.  For the set of trials in which we provided users with count-

based questions, we generated six unique question sets. We assigned a single centralized network, 

decentralized network, and control group to each question set, so that we obtained a single group 

estimate per condition for each question (see Ensuring Data Quality, below).  For the set of trials 

in which we provided users with percentage based tasks, we provided each question 

simultaneously to a large number of unique groups (see Ensuring Data Quality, below), so that we 

obtained multiple group estimates for each question.  Because count-based questions generate a 

consistent skew, percentage-based questions were introduced to ensure that our results were robust 

to variation in the skew of the distribution of independent estimates.  To produce a wide variation 

of independent estimate distributions, half the groups estimated one parameter (eg, “what percent 

of people in this crowd are wearing hats”) and half the groups estimated its numeric complement 

(eg, “what percent of people in this crowd are not wearing hats”).  Example prompts from the 

count-based tasks and the full set of prompts for percentage-based tasks are shown in Figs S5 and 

S6 below.  

For count-based estimation tasks, we used four different image prompts: (A) a picture of 

food, asking participants to estimate the number of calories; (B) a bowl of coins, asking 

participants to estimate the number of coins; (C) a jar of candies, asking participants to estimate 

the number of candies; and (D) a picture showing several consumer goods, asking participants to 

estimate the total cost of all the items.  A unique set of image prompts was used for each question 

set.  For percentage-based questions, we used five estimation tasks, each with its own image 

prompt: (A) an image of dots of two colors; (B) a crowd of people (C) a crowd of people holding 

umbrellas; (D) the numbers 1 through 10 repeated many times in different colors; and (E) a 
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Question 1a - 1f. Health estimation:  how 

many calories are in this meal? 

 

 

 

 

 

 

 Question 2a - 2f. Economic estimation: 

what is the combined cost of these items 

(in dollars)? 

 

 

 

 

Question 3a - 3f.  Arithmetic estimation 1:  

how many candies are in this container? 

 

 Question 4a - 4f.  Arithmetic estimation 2:  

how many pennies are in this photo? 

 

Fig. S5.    Each panel shows a sample count-based estimation task with the accompanying text.  

We provided participants with six unique sets (a through f) of four questions, each of which varied 

slightly in the details (eg, a different food item).  In total, we collected data for 24 unique count-

based estimation tasks. 
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Fig. S6.  Each panel shows one of the five prompts used for percentage-based estimations.  For 

each prompt, participants were asked to estimate one of two possible complementary parameters.  

In total, we collected data for 10 unique percentage-based estimation tasks. 

 

 

 
Question 5a:  What % of the rectangle is filled by 

the dark purple? 

Question 5b:  What % of the rectangle is filled by 

the light purple?   

 

 Question 6a:  What % of these people are wearing 

hats? 

Question 6b:  What % of the people are NOT 

wearing hats? 

 

 

 

 

 

 

 

 

 
Question 7a:  What % of the dots in this image are 

blue? 

Question 7b:  What % of the dots in this image are 

red? 

 Question 8a:  What percent of the characters in this 

figure are the number 10? 

Question 8b:  What percent of the characters in this 

figure are NOT the number 10? 

 

 

 

Question 9a:  What % of the umbrellas in this image are NOT solid black? 

Question 9b:  What % of the umbrellas in this image are solid black? 
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rectangle with a dark purple and a light purple segment.  Two questions were created for each 

image prompt, one asking subjects to estimate a percentage-based parameter, and the other asking 

for the complement of that parameter.  For example, in image prompt (B) showing a crowd of 

people, in three trials subjects were asked “What percentage of people in this photograph are 

wearing hats?” and in four trials subjects were asked “What percentage of people in this 

photograph are not wearing hats?”  By using question sets that asked participants to estimate either 

a value or its complement, we obtained a wider variety of estimate distributions. 

The answers to each of the questions were verified by the nutrition label for the health 

estimation, the manufacturer websites for the economic estimation, and independent counts for the 

arithmetic and percentage based estimation questions. In the case of the economic estimation task, 

the pictures contained images of three items, the prices of which were independently researched 

and aggregated.  Participants in the study had one minute for each round, which prevented them 

from discovering the retail value of all three items in the time allotted.  The wide standard deviation 

in participants’ responses for each question (as shown in the Supplementary Data tables) confirmed 

that subjects did not have independent access to the correct answers.   

 

Network Metrics.  While asymptotic results (21) identify eigenvector centrality as the 

determining factor in collective beliefs, we study collective beliefs after only two belief revisions.  

In diffusion processes, eigenvector centrality represents the limiting measure of influence as time 

increases, where degree centrality reflects a node’s influence after only one time period (42).  

Similarly in the DeGroot model, an individual’s weight in the collective belief is equal to their 

degree centrality after a single revision, while eigenvector centrality represents the long term limit 
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(21).  In the random networks used here, degree centrality is highly correlated with eigenvector 

centrality, and the most central node is generally the same with both metrics.  Our experimental 

design utilizes a network that is highly centralized as measured by both metrics of centralization 

(28).  In the figures showing simulated results, we measure networks with degree centralization. 

Degree centrality is a network centrality metric assigned to each node in a network that is 

measured by simply counting the number of edges that are connected to a given node (40).  In our 

experimental design, we consider only undirected networks, and therefore make no distinction 

between in-degree and out-degree.  As a result, degree centrality for a given node is simply its row 

(or column) sum in the network adjacency matrix.   

Centralization is a generic measure that describes the equality of distribution for any 

centrality metric in a network (28).  A network with highly unequal centrality (i.e., a small number 

of central nodes and many peripheral nodes) has a high degree centralization, while a network 

where all nodes are equally central has a low degree centralization.  Centralization scores are 

normalized by the maximum possible, where C=0 indicates no centralization (all nodes are equally 

central) and C=1 indicates the maximum possible centralization.  Centralization is defined as the 

following: 

max

1

*

C

cc
C

N

i i 


  

where ic  indicates the centrality score for node i, and  c* indicates the centrality score for the most 

central node, and Cmax is a normalizing constant equal to the maximum possible value for the 

numerator for a  graph with N nodes (28).  
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Experimental and Simulation Network Conditions.  Our experimental test employed two 

network conditions.  The decentralized condition employed a random network where every node 

had the same number of connections, yielding degree centralization C=0.  We constructed a 

network with 4 edges per node, and employed the same network across all decentralized trials to 

minimize variance.  The centralized condition employed a star network, which consists of a single 

central node with one connection to all peripheral nodes, yielding a network with degree 

centralization C=1.  Robustness checks using our theoretical model show a continuous effect of 

degree centralization on the wisdom of crowds in the range C=0 to C=1 (Fig. S7).  

All networks used in simulations were generated using the igraph package v0.7.1 in R 

v3.2.0.  Decentralized networks were generated using the degree.sequence.game function with the 

“vl” method, which samples uniformly from the set of possible graphs.  In our case, a network is 

fully determined by two parameters:  N, which determines the number of nodes; and k, which 

determines the degree of each node.  In order to generate a set of networks that vary continuously 

in their centralization score, centralized networks were generated using the barabasi.game 

function, which runs a variant of the preferential attachment algorithm described by Barabasi and 

Albert (41).  These networks are fully determined by three parameters:  N, which determines the 

number of nodes; m, which determines the minimum degree of any node; and p, which determines 

the strength of preferential attachment.  By varying the strength of preferential attachment 

(“power” parameter) this algorithm can generate networks with a range of centralization.  When 

power is sufficiently high, this algorithm generates a star network, allowing us to test a continuous 

range of centralized networks.  All centralized networks in the simulations were generated with 

m=1, and power (p) ranged from 0 to 3. We generated decentralized networks with k = 4, which 

by construction have an average degree Z = 4 and density D = 0.1.  In the centralized networks, 
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average degree is fully determined by N and m.  In our case, m=1, which yielded an average degree 

Z = 1.95 and density D = 0.05.  Note that this is fixed by N and m, and thus does not vary with p.  

As a result, in the simulations where centralization varied (Fig. S12) average degree and density 

remained constant.  

 

Supporting Data Analysis 

For each estimation task by each experimental or control group, we measure collective belief in 

terms of the central tendency of the estimate distribution, i.e., its mean or median.  To assess 

collective error, we used the absolute value of the difference between the collective belief and the 

true answer.  In order to facilitate comparisons across questions with varying response 

distributions, all outcomes are normalized by the standard deviation.  This is equivalent to 

normalizing all responses prior to analysis.  For example, the error of a group estimate as measured 

by the mean is defined as: 

1,
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



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truthmean
error


 

 

Fig. S7. The two network conditions used in the experimental trials were a decentralized 

network and a maximally centralized star network. 
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where the numerator indicates the absolute value of the difference from truth for group j on the qth 

question at time t, and the denominator indicates the pooled standard deviation of independent 

(baseline) responses for all individuals who answered that question in both of the network 

conditions and the control condition.   I.e., the standard deviation in the denominator is based on 

all independent responses to a given question.  All outcomes, including change in error, are 

therefore measured in terms of standard deviations. 

To assess individual error, we measured the absolute value of the difference between an 

individual’s response and the true answer, and normalized this value by the standard deviation of 

baseline responses for that question as follows: 

1,

,,

,,

||






tq

qtqi

tqi

truthresponse
error


 

where individual i’s error is the absolute distance between their response and the truth for that 

question, normalized by the standard deviation of initial responses for that question at Round One. 

To assess whether crowds were wise in their baseline judgments, we compared the error of 

the group mean, errorj,t=1, to each individual response, responsei,q,t=1 and calculated the proportion 

of individuals for group j on question q that were more accurate, less accurate, or equally accurate 

as compared to the group belief.  When reporting this percentage across multiple group estimates, 

we report the average value of this percentage as calculated for each group estimate for each 

question.  

To assess the properties of estimate distributions, we measured the skew for each group 

estimation as well as the relative location of the mean, median, and true answer.  In 21 of the 24 

group estimations for count-based estimation tasks by decentralized networks, the estimate 

distribution at Round One had a mean that fell between the median and truth, or a mean that fell 

on the opposite side of truth from the median (Fig S8).  In 18 of the 35 estimations for percentage-
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based estimation tasks by decentralized networks, the estimate distribution at Round One had a 

mean that fell between the median and truth, or a mean that fell on the opposite side of truth from 

the median.   In these cases, social influence is expected to pull the median towards the mean, 

improving the accuracy of the mean, as described in our theoretical overview below. 

All statistical tests presented here and in the main text used two-tailed tests.  Because each 

network and control group completed multiple estimation tasks, all of our analyses control for 

correlations between estimates made by the same group.  The main analyses are conducted as 

follows.  For each task within a given experimental trial, we first measured the error of the mean 

for that task as the group error for the 40 subjects in a network.  We then took the average of these 

group errors over all tasks that were completed within the trial.  This average group-level error 

was measured both at Round One and at Round Three for every experimental trial.  This yields a 

single, network-level value for the initial group error and the final group error for each condition 

in the trial.  We repeated this process for each of the 13 experimental trials.  This produces 13 

independent observations for each network condition.  We then calculated the average error for 

each network condition by taking the mean of these 13 observations, both at Round One and Round 

Three, for decentralized and centralized networks.  Complete data for all tests are provided in the 

Supporting Data File. 

 

Wisdom of the Crowds.  We test the wisdom of the crowds by calculating, for each group 

estimation, the percentage of individuals who hold an independent response that is more accurate 

than the mean or median of independent responses.  Across all centralized group estimations, 

decentralized group estimations, and control group estimations, an average of 35% of individuals 

have an independent response that is more accurate than the mean, and 34% are more accurate 
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than the median.  To generate this estimate, we first calculate the percentage of initial responses 

in each group estimation task that are more accurate than the initial mean/median of individual 

responses.  We average that value across all estimation tasks completed by each of the 13 

decentralized trials, 13 centralized trials, and 8 control groups.  Finally, we average that value 

across all trials. 

 

Analysis for Decentralized Networks.  The statistical analysis for the decentralized networks is 

based on the analysis of 13 experimental trials, comparing the estimates before social influence 

(Round One) to the third estimate after two revisions (Round Three).  Because individual data are 

not independent, we conduct all analysis at the group level.  Because individual groups completed 

multiple estimation tasks, we analyze the average effect of the 13 independent experimental trials.  

Table S1 shows the cumulative change from Round One to Round Three for the average revision 

coefficient, error of the mean, and standard deviation for each of the 13 experimental trials. 

Across all 13 experimental trials, the average standard deviation within each group was 

0.96 s.d. at Round One and 0.55 s.d. at Round Three.  To calculate these values, we first measure 

the standard deviation for each estimation task at Round One and Round Three.  We then measure, 

for each experimental trial, the average standard deviation across all tasks.  To test whether this 

decrease is significant, we compare the 13 measurements of average standard deviation at Round 

One with the 13 measurements of average standard deviation at Round Three with a Wilcoxon 

signed rank test, and find that mean of the standard deviation was significantly lower at Round 

Three than Round One (P<0.001). 
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The error of the mean, averaged across all 13 trials with decentralized groups, was 0.70 

s.d. at Round One and 0.62 s.d. at Round Three.  To calculate these values, we first measure the 

error of the mean for each estimation task at Round One and Round Three.  We then measure, for 

each experimental trial, the average error of the mean across all tasks.  In 12 of the 13 trials, average 

error decreased after social influence (Table S1).  To test whether this decrease is significant, we 

compare the 13 measurements for average error of the mean at Round One with the measurements 

for average error of the mean at Round Three with a Wilcoxon signed rank test, finding that the 

average error of the mean was significantly lower at Round Three than Round One (P<0.01).   

Using a similar test, we also find that the error of the median significantly decreased after social 

influence (P<0.001).   

In addition to measuring change in group error, we also examine changes in individual 

error.  Because network data are not independent, we estimate this value by first measuring the 

average individual error for each independent group estimation task, and then average this value 

Group  

ID 

Tasks 

Completed 

Avg. Revision 

Coefficient 

 Cumulative Change, Round One to Round Three 

 

Individual Error Error of Mean 

Standard 

Deviation 

2 4 0.31  -0.18 0.03 -0.39 

3 4 0.47  -0.25 -0.13 -0.65 

5 4 0.29  -0.16 -0.01 -0.25 

7 4 0.06  -0.10 -0.01 -0.33 

9 4 0.30  -0.25 0.00 -0.58 

12 4 0.34  -0.26 -0.09 -0.44 

13 5 0.15  -0.18 -0.06 -0.34 

16 5 0.30  -0.24 -0.09 -0.40 

18 5 0.22  -0.25 -0.12 -0.42 

19 5 0.24  -0.28 -0.09 -0.37 

22 5 0.46  -0.33 -0.16 -0.45 

23 5 0.21  -0.26 -0.10 -0.37 

24 5 0.23  -0.24 -0.09 -0.34 

Table S1.  Average revision coefficient and cumulative change in average individual error, 

average error of the mean, and average standard deviation for estimation tasks completed by 13 

experimental trials with decentralized networks.  In 12 out of 13 trials, the error of the mean 

decreased on average across all completed estimation tasks. 
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across all estimation tasks completed by each experimental trial.  For all 13 experimental trials 

with decentralized networks, mean individual error at at Round One was 0.99 s.d. and 0.76 s.d. at 

Round Three.  To test whether this decrease is significant, we compare the 13 measurements for 

average individual error at Round One with the 13 measurements at Round Three using a Wilcoxon 

signed rank test, and found that the average individual error was lower at Round Three than Round 

One (P<0.001).  

To explain the decrease in error by decentralized networks, we measure the correlation 

between the revision coefficient (see Analysis of Individual Behavior, below) for each estimation 

task by each network and the change in the error of the mean from Round One to Round Three.   

Because each network completed multiple estimation tasks, we measure this as the partial 

correlation after controlling for correlation between estimation tasks completed by the same group.  

To do this, we first regress each outcome variable (revision coefficient or change in error) for each 

of the 59 estimation tasks on a categorical variable indicating membership in one of the 13 groups.   

We then measured the correlation between the residuals of these two regressions.  This is 

equivalent to directly measuring the correlation between revision coefficient and change in error 

after subtracting the mean value for each experimental group from each outcome variable.  We 

describe the process of measuring partial correlation in more detail below, in Analysis of 

Individual Behavior.  To generate confidence intervals on this estimate, we use the percentile 

bootstrap method (44) drawing each bootstrap sample at the cluster level, following standard 

methods for clustered data analysis (45). 

 

Comparison of Decentralized Networks with Control Group.  As a robustness test, we compare 

the behavior of decentralized networks with the behavior by individuals in control groups.  We  
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first consider whether standard deviation significantly decreased in control groups.  For the 8  

experimental trials with control groups, average standard deviation was 0.97 at Round One at 0.95 

at Round Three.  To test whether this decrease is significant, we compare the 8 values for average 

standard deviation at Round One with the 8 values for standard deviation at Round Three using a 

Wilcoxon signed rank test, and find that standard deviation was not significantly lower at Round 

Three than Round One (P>0.25).  Because individual responses within control groups are 

independent, we also compare variance at Round One with the variance at Round Three for each 

group estimate separately.  Using an F-test for change in variance, we generate a P-value for each 

of the 34 estimates by the 8 control groups.  We adjust the P-values for multiple testing using the 

Holm method, which is less likely than Bonferroni correction to produce Type II error (43).  In 

one out of the 34 groups, standard deviation decreased significantly (adjusted P<0.001).   

To test whether overall decrease in standard deviation is significantly smaller than the 

decrease in standard deviation for centralized and decentralized networks, we first calculate the 

average change in standard deviation for each of the 8 control trials (Table S2), 13 decentralized 

trials (Table S1), and 13 centralized trials.  We compare these using a Wilcoxon rank sum test, and 

conclude that the change in standard deviation is significantly greater in decentralized networks 

Group  

ID 

Tasks 

Completed 

 Cumulative Change, Round One to Round Three 

 

Individual Error Error of Mean 

Standard 

Deviation 

27 4  0.07 0.10 0.57 

28 5  -0.04 -0.05 -0.04 

29 4  -0.03 0.04 -0.10 

30 5  -0.09 -0.07 -0.08 

31 4  -0.13 -0.06 -0.44 

32 4  0.03 -0.03 0.04 

33 4  -0.04 -0.02 -0.05 

34 4  -0.03 0.06 -0.09 

 

    

Table S2. Cumulative change in average individual error, average error of the mean, and average 

standard deviation for estimation tasks completed by 8 control groups.    
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than control groups (P<0.001) and is significantly greater in centralized networks than control 

groups (P<0.001). 

We next consider whether individual error decreased after revisions by isolated individuals.  

Because individual responses are independent, we can conduct this analysis at the individual level.  

For the 320 individual assigned to a control group, we first calculate the average error at Round 

One and Round Three across all the estimation tasks completed by each individual.  We then 

compare the average individual error for Round One (1.0 s.d.) to Round Three (0.97 s.d.) using a 

Wilcoxon signed-rank test, and conclude that average individual error decreased after revisions in 

control groups (p<0.01).   

Notably, the magnitude of the reduction in individual error was only 0.03 s.d. in the control 

condition conditions, while average individual error decreased by 0.23 s.d. in decentralized 

networks.  To test whether this difference is significant, we calculate the difference between the 

average individual error at Round Three and the average individual error at Round One for each 

of the 8 control groups using a similar process to the group analyses described above.  We then 

compare the 8 values for the control condition (Table S2) with the 13 values for the decentralized 

condition (Table S1) using a Wilcoxon rank sum test, and conclude that individual improvement 

was significantly greater for individuals in decentralized networks than individuals in the control 

condition (P<0.001).   

Importantly, a reduction in individual error does not guarantee collective improvement if 

it does not lead to a shift in the overall distribution.  To test for change in group accuracy in the 

control case, we first conduct an analysis comparable to our main analysis on networked groups, 

analyzing the change the error of the mean estimate for each of the 8 control trials.  The average 

error of the group mean was 0.69 s.d. at Round One and 0.68 s.d. at Round Three.  To test if this 
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decrease is significant, we compare the 8 values for average error of the mean at Round One with 

the 8 values at Round Three with a Wilcoxon signed rank test, and find that error does not 

significantly change (P>0.87).    

Because individual estimates are statistically independent, we can also directly examine 

the shift in group distributions.  To test whether individual revisions had any effect at all on the 

mean of estimate distributions, we test for a change in the group mean for each individual 

estimation task, each of which was completed by 40 independent individuals.  For each of the 34 

unique estimation tasks, we compare the distribution of the Round One estimates with the 

distribution of the Round Three estimations using a Wilcoxon signed rank test.  This generates 34 

P-values for the change in mean, which we then correct for multiple tests using the Holm method, 

which is less likely to produce Type II error than the Bonferroni correction (43).  None of these 

are significant, with a range of 0.32 to 1.0 and a mean value of 0.90.  As a result, we conclude that 

the group mean for estimates by control groups did not significantly change after revisions.   

 

Analysis for Centralized Networks.  The statistical analysis for the centralized networks is based 

on the analysis of 59 group estimation tasks completed in 13 experimental trials, comparing the 

independent estimates (Round One) to the final socially influenced estimates (Round Three).  In 

two cases, the central node failed to provide a response at either Round One or Round Two, and 

thus the 39 other nodes in this network were not exposed to any social information.  Thus, to 

determine the effect of social influence on change in group estimates, this analysis is conducted 

on the remaining 57 group estimates. 
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To test the effects of social influence in centralized networks, we conducted the same test 

for the standard deviation that we conducted for decentralized networks as described above.  In 

this test, we compared the 13 values for the average standard deviation of estimates at Round One 

with the 13 values for average standard deviation of estimates at Round Three using a Wilcoxon 

signed rank test, and found that the standard deviation significantly decreased in centralized 

networks (P<0.001). 

To explain the dynamics of centralized networks, we study change in error conditioned on 

whether the central member held a belief that was in the direction of the ruth relative to collective 

judgment or in the opposite direction of truth (see Fig. S8).  For each experimental trial, we 

measure the change in error for those estimations where the central node was in the direction of 

the truth separately from the change in error for those estimations where the central node was away 

from the truth.   In 12 out of 13 trials, at least one estimation fell in each category (see Table S3).  

In one trial, the central node was away from the truth in all four estimation tasks.  

To calculate the change in error for these two categories, we first measure, for a given 

experimental trial, the error of the mean (or median) at Round One and Round Three across all 

estimation tasks that fall into a given category (eg, central node toward truth).  We then measure 

   

Case 1 Case 2 Case 3 

Fig. S8.  Each of these panels illustrates a different possible relationship between the estimate of 

the central node and the group belief.  In Case 1, the central node is more accurate than the group 

mean, and pulls the group mean towards truth.  In Case 2, the central node is less accurate than the 

group mean, but still pulls the group mean towards truth.  In Case 3, the central node is less accurate 

than the group mean, and falls on the opposite side of the group mean from truth, and thus pulls 

the group away from the true value.  
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Group  

ID 

 

Number of 

Tasks 

 Cumulative Change 

Round One to Round Three 

Central Node Belief 

In Right Direction? 

 Individual 

Error 

Error of 

Mean 

1 
No 2  0.06 0.12 

Yes 2  0.48 -0.26 

4 
No 1  -0.14 0.29 

Yes 2  0.25 -0.08 

6 
No 2  0.13 0.29 

Yes 2  0.20 0.04 

8 
No 4  -0.06 0.22 

Yes 0  --   --     

10 
No 2  -0.03 0.07 

Yes 2  0.31 -0.14 

11 
No 1  -0.01 -0.12 

Yes 3  0.15 -0.01 

14 
No 1  -0.07 0.44 

Yes 4  0.48 -0.35 

15 
No 4  -0.10 0.24 

Yes 1  0.62 -0.60 

17 
No 3  -0.05 0.19 

Yes 2  0.27 -0.10 

20 
No 2  0.21 0.14 

Yes 2  0.41 -0.14 

21 
No 2  0.12 0.07 

Yes 3  0.37 -0.31 

25 
No 1  -0.04 0.19 

Yes 4  0.45 -0.37 

26 
No 2  0.16 0.04 

Yes 3  0.50 -0.54 

 
 

    

Total for All Trials  

Cumulative Change 

Round One to Round Three 

 

Central Node Belief 

In Right Direction 

Number of 

Trials  

Individual 

Error 

Error of 

Mean 

 
No 13  0.17 0.29 

Yes 12  -0.24 -0.34 

 

 

Table S3.  Summary data for centralized networks, conditioned on the relative location of the 

central node.  When the central node held a belief that pulled the group toward truth, error of the 

mean and median decreased on average across all estimation tasks.  When the central node held a 

belief that pulled the group away from truth, error of the mean and median increase on average 

across all estimation tasks.  The values for each row indicate the average across all group estimates 

in that category.  For change in the error of the mean and change in standard deviation, results are 

conditioned on the relative location of the mean and the central node.  For change in the error of 

the median, results are conditioned on the relative location of the median and the central node. 
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the average change in error for each category for each experimental trial.  For estimations in which 

the central node was toward truth, the average error of the mean was 0.56 s.d. at Round One and 

0.32 s.d at Round Three.  We compare the 12 values for average error at Round One to the 12 

values at Round Three with a Wilcoxon signed rank test, and conclude that average error of the 

mean decreased after social influence when the central node was toward truth (P<0.001).  Across 

all 13 trials, the average error of the mean estimate increased when the central node held an 

estimate that was in the direction away from truth (Table S3).  For this category, average error at 

Round One was 0.84 s.d. and was 1.01 s.d at Round Three.  We test whether this increase is 

significant with a Wilcoxon signed rank test, finding that average error at Round Three was 

significantly greater than average error at Round One (P<0.001).  We conduct a similar test for the 

change in the median.  Using the same analysis, we found that when the central node was in the 

direction of truth relative to the group median, the error of the median decreased (N=12, P<0.001, 

Wilcoxon signed rank test). When the central node was away from truth relative to the group 

median, the error of the median significantly increased (N=13, P<0.001, Wilcoxon signed rank 

test). 

One important possibility is whether a central node that was accurate on one question is 

also likely to be accurate on another question.  To examine if individual accuracy on one question 

was predictive of accuracy on another, we examined the correlation among individual errors across 

the four categories of count-based questions and the five categories of percentage-based questions.  

For each set of questions, we measured the pairwise correlation between the complete set of 

independent responses for each set of questions (eg, we measured the correlation between 

individual error for Arithmetic Estimation 1 and individual error for Health Estimation, and 

repeated this measurement for all possible pairs).  We then averaged the correlation for all pairwise 
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comparisons to yield an estimate of the overall correlation between questions. The average 

numerical correlation was extremely small, with ρ̅=0.042 for count-based questions and ρ̅=0.029 

for percentage-based questions.  We therefore conclude that individuals who are accurate on one 

question are not likely to be accurate on another question.  Complete data for this test is provided 

as a Supporting Data file. 

We also examine the effect of social influence on the accuracy of the 13 subjects placed in 

the central position in a centralized network.  Average error for these subjects was 0.98 s.d. before 

social influence and 0.78 s.d. after social influence.   To test if this decrease is significant, we 

compare the 13 values for the average error of the central node at Round One with the 13 values 

at Round Three using a Wilcoxon signed rank test, and find that the average error of the central 

node at Round Three was significantly lower than Round One (P<0.01). 

 

Analysis of Individual Behavior.  To calculate the revision coefficient for each estimation task 

by each group, we measure the correaltion between the magnitude of individual revisions ∆Ri = 

|R1,i – R3,i| and individual error E1,i = |R1,i – T|, after controlling for the magnitude of the social 

signal S1,i = | R1,i – 
iNjR ,1 | where Rt,i indicates the estimate for subject i at time t, 

iNjtR , indicates 

the average estimate of subject i's network neighbors at time t, and T is the true answer.  Individual 

revision magnitude for subject i is measured as the absolute value of the difference between their 

estimate at Round Three and their estimate at Round One.  The magnitude of the social signal is 

measured as the absolute value of the difference between an individual’s independent estimate at 

Round One and the average independent estimate of their network neighbors at Round One.  To 

measure the partial correlation, we first regress ∆R·  on S0,· and measure the residuals from this 

regression for each individual i as e1,i. We then regress E0,· on S0,· and obtain the residuals from 
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this regression for each individual i as e2,i.  Finally, the partial correlation is measured as the 

correlation between e1,· and e2,·, which we refer to as “revision coefficient.”   

Because each individual completed multiple estimation tasks, our correlation analyses for 

the entire population (Fig. 2, main text) include the addition of a categorical control variable 

indicating which individual provided each estimate. This is equivalent to correlating each 

individual’s error and revision magnitude after subtracting their individual average for each value, 

and follows the same procedure described above for our correlation analysis of decentralized 

networks.  The procures a partial correlation ρ=0.25 that is equivalent to the coefficient in a linear 

regression, scaled to fall between zero and one.  Analysis of covariance indicates the relationship 

is significant at P<0.001, and therefore we conclude that error is correlated with the magnitude of 

an individual’s revision when the magnitude of their social signal is held constant.   

 In the main text, all analyses compare estimates at Round One with estimates at Round 

Three.  We also analyze individual behavior separately for the first revision between Round One 

and Round Two, and the second revision between Round Two and Round Three.  Using the same 

method as described above, we find that error is significantly correlated with the magnitude of 

revision after controlling for social information at both stages of revisions (ρ=0.13, P<0.001 for 

the first revision; ρ=0.37, P<0.001 for the second revision). 

Our theoretical model assumes that an individual’s revised answer falls somewhere 

between (or is equal to) their initial answer and the average of their peers.  The amount of distance 

that is closed is defined in the model by the parameter αi assigned to each individual.  As we 

describe in the model definition below, we can identify this parameter for each revision by each 

subject as a function of that subject’s estimate before social influence, the average estimates of 

that subject’s network neighbors before social influence, and the subject’s estimate after social 
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influence.  Our theoretical model assumes that this value falls between zero and one.  However, 

some individuals revise their answer such that it moves in the opposite direction of social 

information, yielding a negative value when this parameter is calculated, or they adjust their 

answer so that it moves past the average of their network neighbors, yielding a value greater than 

one.  Table S4 shows the distribution of each class of outcomes, measuring αi for both the first and 

second revisions by all individuals in a network condition.  In both revision processes, over 80% 

of people displayed behavior consistent with our theoretical model, providing estimates that 

yielded a parameter value 0 ≤ α ≤ 1.    Considering only those individuals with a valid α in both 

revisions (ie, 0 ≤ α ≤ 1), we compare the mean α for Revision 1 with the mean α for Revision 2 

using a Wilcoxon signed rank test, and find that α increased significantly from the first revision to 

the second revision (P<0.01, Wilcox rank-sum test).  This increase in α indicates that the 

magnitude of revisions decreased slightly between rounds. 

  

Proportion 

of Estimations Mean 

Revision 1 

α < 0 9.0% -1.52 

α > 0 7.5% 2.15 

0 ≤ α ≤ 1 83.5% 0.63 

Revision 2 

α < 0 8.8% -1.53 

α > 0 10.4% 2.22 

0 ≤ α ≤ 1 80.8% 0.74 

 

Table S4.   Our theoretical model assumes that individuals have a coefficient between zero and 

one inclusive.  This table shows the distribution of αi as measured for both revisions by N=1040 

individuals completing 4340 estimation tasks in network conditions.  Most individuals displayed 

behavior consistent with the theoretical model, with an estimated αi between zero and one 

inclusive.  Of these, 19.1% of users did not change their answer at all in the first revision (ie, αi =1) 

and 34.7% made no change in the second revision.  When αi < 0 an individual moved away from 

the average of peer estimates, and when αi > 0 the revision overshot the average of peer estimates. 
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   Table S4 omits revisions for which αi is not defined, including 107 Round One responses 

which were exactly equal to the social signal at time 1, and 168 Round Two responses that exactly 

equaled the second social signal.  These totaled 1.9% and 2.9% of estimates, respectively.    

Complete experimental data is provided as a Supporting Data file.   

 

Attrition. The experiment lasted 15 minutes, which resulted in very few cases of attrition. Across 

all trials, only 6.5% of initial estimates and 5.3% of final estimates were non-responses.  There 

were no significant differences in attrition between centralized and decentralized network 

conditions, for either initial estimations (P>0.69, Chi-squared test) or final estimations (P>0.99, 

Chi-squared test).  For tests, figures, and tables showing change in error between Round One and 

Round Three, we use only those responses by individuals who provided a response at both Round 

One and Round Three.  An analysis on the full data set provided qualitatively similar results to 

those presented here.   

 

Ensuring Data Quality.  We took precautions to ensure that the subjects did not violate the design 

of the experiment. Such precautions can be more difficult in online experiments because 

researchers may have less control over the behavior of the subjects than in traditional laboratory 

settings. We took several steps to ensure that the data collection was sound. In order to prevent 

individuals from playing the “Intelligence Game” multiple times, we designed the system so that 

if a user tried to use a second browser tab to simultaneously access the game, the system would 

produce an error, and allow only one active browser tab to communicate with our servers. As a 

result, users were prohibited from playing simultaneously on the same computer.  For users 

recruited from the web at large, we required users to enter their email address before playing the 
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game, and all payments were sent to these addresses, which made it more difficult for users to gain 

access to the system multiple times. To do so, a user would have had to enroll with multiple email 

addresses. The interface was very simple and was explained with a set of instruction pictures as 

users waited for the game to start, so there was very little reason to believe that there was any skill 

or learning that could occur from having played the game before.  For those trials where users 

were recruited at-large from the web (count-based questions) we used unique sets of questions for 

each trial (where a trial includes one centralized, one decentralized, and control group) so that 

repeat users would not have any advantage over new players.  For percentage-based estimates, we 

recruited participants from Amazon Mechanical Turk platform limiting our sample to U.S. 

participants, which provides strong safeguards ensuring that each registered user was unique.  

Because of these safeguards and the short time period for this phase of the data collection, we 

repeated percentage-based questions across multiple trials.   

 

Simulation Analysis 

This study builds on theoretical models of opinion formation (20,21) in which agents who revise 

their beliefs indefinitely will eventually reach consensus, so that every agent in a population shares 

the same belief (20).  DeMarzo  et al. (21) analyzed the asymptotic properties of DeGroot’s model 

of consensus (20), showing that after infinite revisions, group opinions converged to a weighted 

mean of the initial, independent opinions.  Each individual’s weight in that final collective 

estimate, or “social influence weight,” is determined by that node’s eigenvector centrality in the 

weighted social influence network (21).  After only a single revision, however, each node’s social 

influence weight is determined by the sum of incoming tie weights.  In decentralized networks 
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(where agents all have the same centrality) this means simply that the group will converge toward 

the mean of independent estimates.   

In populations where the initial beliefs are distributed asymmetrically around their mean, 

this process leads the median to converge toward the mean in decentralized networks.  In count-

based questions, we observed initial belief distributions that were heavily right-skewed so that the 

median was less than the mean. Additionally, these opinion distributions were negatively biased, 

so that participants tended to underestimate the true answer.  These properties produced estimate 

distributions where the median was less than the mean, and in turn the mean was less than the true 

answer.  These properties of belief distributions, along with the properties of estimation revision, 

suggest that under minimal satisfying conditions, social influence will improve the median of 

group estimates in decentralized networks (Fig. S10).  

Empirically, however, we observed a reduction in accuracy not only for the median belief, 

but also the mean belief, and we explain this result by analyzing individual behavior.  We observed 

that individuals who were more accurate made smaller revisions to their estimate, even after 

controlling for the distance between their estimate and their neighborhood signal.  One explanation 

for this observation emerges from Bayesian decision theory, which forms the basis for the social 

learning model we study here (21).  Demarzo, Vayanoz, and Zweibel (21) note that a rational actor 

should place more weight on estimates they consider to be more reliable.  Thus, if agents have 

information about the accuracy of their own estimates (e.g., if self-confidence is correlated with 

accuracy) then it follows that self-weight is correlated with accuracy.  Another possibility is that 

subjects who are more analytically focused on the estimation task might (due to limited cognitive 

resources) give less attention to social information and also generate more accurate answers.  Both 

of these possibilities offer interesting directions for future research. 
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To model this effect, we first estimate the self-weight (αi) each individual placed on their 

own belief for each estimate in our experimental study.  We then measure the relationship between 

error and this self-weight.  We then use the coefficient from this regression in our simulation, 

adding a variable noise term to allow us to continuously vary the strength of the correlation 

between -1 and +1.  Our simulation results show that a strong positive correlation between 

accuracy and self-weight is sufficient to generate an improvement in collective accuracy, while a 

strong negative correlation leads to an increase in error.  When this correlation is zero, the group 

converges on the mean in decentralized networks. 

 In contrast, however, consensus beliefs in centralized networks are determined almost 

entirely by the network structure and the distribution of individual beliefs.   Even when there is a 

strong positive or negative correlation between accuracy and self-weight, collective beliefs after 

social influence are largely determined by the belief of central individuals.  

As shown in Table S4, we observe a slight decrease in the magnitude of individual revisions 

between Round One and Round Two.  However, DeGroot (20) and DeMarzo (21) assume that 

individual responsiveness to social influence remains constant over time.  Our simulations show 

that a decrease in revision magnitude over time leads to a minor decrease in effect sizes, but does 

not otherwise change the network dynamics of social influence on the wisdom of crowds. 

 

Model Definition.  To identify theoretical expectations for the effect of social influence on the 

wisdom of crowds, we use agent-based simulations to model the change in group mean and median 

under a range of assumptions. In particular, we vary several parameters:  network structure, including 

centralization, density, and average degree; initial opinion distribution shape, including normal 

(symmetrical) and log-normal (asymmetrical); the accuracy of the collective estimate prior to social 
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influence; the correlation among individuals between error and revision magnitude; and the decay 

in individual responsiveness to social influence (i.e., the increase in self-weight) over time. 

As described in the main text, our model of collective judgments builds on DeGroot’s (20) 

formalization of local information aggregation, in which an agent i updates their estimate, Rt,i , 

after being exposed to the estimates of their network neighbors, 
iNjtR , .  We define an agent’s 

revision process with three components:  their own estimate; the estimates of network neighbors; 

and “self-weight,” or the amount of weight they place on their own estimate relative to the 

estimates of their network neighbors.  Each agent responds to social information by adopting a 

weighted mean of their own estimate and the estimates of their neighbors, according to the rule: 

iNjtiitiit RRR   ,,,1 )1(  , (1) 

where the value Rt,i indicates the response of agent i at time t; i  indicates the self-weight an agent 

places on their own initial estimate; ( 1- i ) indicates the weight they place on the average estimate 

of their network neighbors; and
iNjtR ,  indicates the average estimate of agent i’s network neighbors 

at time t.  Outcomes are therefore determined by three parameters:  the communication network 

(i.e., who can observe whom), the distribution of independent estimates iR ,1  and the distribution 

of self-weights αi.   

 At the population level, this model describes the dynamics of a group belief as a function 

of the distribution of initial, independent beliefs and an adjacency matrix defining a network of 

social influence.  In this network, a tie from node A to node B is weighted and directed, and 

represents the amount of weight node A places on the belief of node B, where the sum of the 

outgoing tie weights for a single node i equals (1 - i ).   
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That is, in the network adjacency matrix A: 

𝐴𝑖,𝑗 =
1 − 𝛼𝑖

𝑘𝑖
  whenever i ≠ j 

(2) 

and 

Ai,i  =  αi (3) 

where ki equals the total number of network neighbors who are observed by an agent.  Since an 

agent’s self-weight equals αi, and the sum of outgoing ties equals (1-αi), then we can define an 

agent’s revised belief as a weighted mean of their initial unrevised belief and the average belief of 

network neighbors (20). 

Using this model of revision, we can estimate the parameter αi for a given revision by a 

given individual as a function of their initial estimate Rt,i, their social signal 
tiNjR
, , and their revised 

estimate Rt+1,i .  Rearranging equation 1 above shows the solution 

i

i

Njtit

Njtit
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,,

,,1
  

 

(4) 

and we use this equation to estimate self-weights in our empirical data.  Because our theoretical 

model assumes that 0 ≤ α ≤1, we discard values that fall outside this range in the remainder of 

this analysis.  Over 80% of estimated values fall between zero and one (Table S4).   

In the main text, we directly measured the relationship between error and revision 

magnitude, which was statistically significant without any value re-scaling.  For count-based 

estimations, which generate a highly skewed distribution, we find that the partial correlation 

between error and the scaled parameter α is not significant, even after controlling for question and 

distance from the social signal (P>0.49, Analysis of Covariance).  However, when error is 

calculated on the log-transformed estimate, this correlation is significant (P<0.05, Analysis of 

Covariance).  This is due to the fact that the domain for α is bounded by zero and one, while the 
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domain for count-based estimates is bounded on the left side by zero and is unbounded on the right 

side, generating log-normal distributions (14).  For percentage-based estimations, which are 

bounded by zero and one hundred, α is significantly correlated with the untransformed estimate 

(P<0.001, Analysis of Covariance).   

As in the main text, all responses are normalized by standard deviation prior to analysis.  

Using the transform described above and standard OLS regression, we estimate the following 

relationship between error and 𝛼: 

𝛼𝑖 = 0.74 − 0.05𝜀𝑖 (5) 

where εi indicates the absolute value of the error for an estimate by agent i.  For count-based 

response distributions, εi = |ln(Ri) – ln(truth)| where ln indicates the natural log function, while for 

symmetric distributions εi = | Ri – truth | where Ri indicates the estimate by agent i.  We use this 

relationship between error and self-weight in our simulations, so that each simulated agent’s 𝛼 is 

determined according to this empirically estimated model and their randomly generated estimate. 

As shown in Table S4, mean αi increases slightly between the first revision (Round One to 

Round Two) and the second revision (Round Two to Round Three), indicating that responsiveness 

to social influence decreases.  To test the effect of increasing α (decreasing responsiveness to social 

influence) we introduce a decay parameter, 0≤δ≤1, that controls how much an agent’s 

responsiveness to social influence decreases each round.  After each revision, each agent’s αi  is 

modified according to the rule: 

αi  = 1 – (1- αi) (1-δ)  . (6) 

When δ=0, this reduces to αi = αi, and each agent’s self-weight (αi) and responsiveness to social 

influence (1- αi) is constant over time and the model is identical to that developed by DeGroot 

(20).  When δ=1, this reduces to αi=1.  Thus, when δ=1, each agent makes only one revision, after 
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which αi=1 and the agent ignores all social information.  When 0< δ<1, αi  gradually approaches 1 

with each revision, and responsiveness to social information gradually decreases. 

We simulate outcomes for two conditions, one in which initial responses (R1) are sampled 

from a skewed distribution and one in which initial responses are sampled from a symmetric 

distribution. For the skewed distribution, we sample a log-normal distribution (shape parameters 

μ=6.1, σ=0.7; mean=600; s.d.=500) and for the symmetric distribution we sample a random normal 

distribution with equivalent mean and standard deviation (μ=600, σ=500).  These parameters 

generate estimate distributions comparable to those observed in our experimental data, while 

allowing us to directly test for the effect of a skew.  We test three levels of accuracy with respect 

to the group mean:  underestimation (truth = mean + 150), overestimation (truth = mean - 150), 

and exactly accurate (truth=mean).   In the case of the skew distribution, this means that the median 

underestimates the true value whenever the mean underestimates the true value; and the median 

overestimates the true value when the mean overestimates the true value; and the median 

underestimates the true value when the mean is exactly accurate.   

Each simulation is initialized by generating a random binary communication network, 

assigning each agent a belief according the estimate distribution as defined above, and assigning 

each agent a value for 𝛼 from a random distribution as estimated above.  A key parameter of 

interest is the strength of correlation between error and revision magnitude, as described above.  

To vary correlation, we generate a weighted combination1 of the value for 𝛼 as determined by 

equation 5 (ie, a degenerate random variable) and a random variable drawn from the empirical 

                                                        
1 Variation in correlation is accomplished with the following algorithm:  for each agent, we randomly draw an initial 

estimate from a distribution that matches our empirical data.  Based on the error of this estimate, we generate two 

values.  The first term, A1, is a fixed determinate value generated according to equation 5 above.  The second term, 

A2, is random variable sampled from the generated distribution of A1.  The final value for α is defined as    α = wA1 + 

(1-w)A2    where w is a weight parameter that determines the strength of correlation between error and α.  When w=1, 

correlation=1. When w=0, correlation=0.  Since A1 and A2 have the same distribution, this varies the correlation 

between α and error while holding mean α constant. 
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distribution of 𝛼.  To generate a negative correlation between error and αi (ie, a positive correlation 

between accuracy and αi ) we use the arithmetic complement of equation 5.  Once initialized, 

simulations are deterministic: the vector of agent beliefs, the vector of αi , the binary network 

adjacency matrix, and the number of rounds fully determine the outcome of a simulation.  Using 

this process, we simulate outcomes comparable to our experimental design, calculating the 

outcome after two revisions (three rounds). 

 

Social Influence in Decentralized Networks.  To identify the general network dynamics of social 

influence, Fig. S9 and S10 show the effect of social influence under a range of assumptions about 

response distribution, group accuracy, and individual behavior for networks with N=1000 nodes.  

When self-weight is not correlated to accuracy (center point on the x-axis of each panel) the mean 

of the group is unaffected by social influence.  When independent estimates follow a skewed 

distribution (Fig S10, Panels A-C), the group median is drawn toward the mean.  When more 

accurate individuals have a higher value for α (correlation > 0) the group mean becomes more 

accurate (Fig. S9).  When inaccurate individuals make smaller revisions than accurate individuals 

the group mean becomes less accurate (Fig. S9).  Empirically, we found that accurate individuals 

tend to place more weight on their own beliefs.  These simulated outcomes are consistent with our 

empirical finding (Fig. 3 in the Main Text) that in networks where this correlation was strongly 

positive, the collective belief became more accurate.  Fig. S11 shows the effect of social influence 

on the group mean when individual responsiveness to social information decreases over time.  We 

find that while effect sizes are slightly reduced, the overall dynamics are identical. 
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Fig. S9.  This figure shows the change in the mean and change in the error of the mean for 

simulated trials.  The x-axis of each panel indicates the correlation between accuracy and αi.  The 

y-axis for each panel indicates the change in the mean and the change in the error of the mean, as 

measured in units of standard deviation.  The top row shows outcomes for a right-skewed (log 

normal) response distribution, and the bottom row shows a symmetrical (normal) distribution.  In 

the left column, the mean of independent responses underestimates the truth by 0.5 standard 

deviations; in the center, the mean equals the truth; and in the right column, the mean overestimates 

the truth.  Theoretical predictions are all consistent with our experimental results.  When 

correlation is greater than zero (accurate individuals move less) the group mean always either 

improves or remains the same.  When correlation equals zero, the group mean remains unchanged.  

N=1,000 nodes per network, 10,000 simulations per point. 
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Fig. S10.  This figure shows the same model parameters as Fig. S9, but displays results for the 

median instead of the mean.  The x-axis of each panel indicates the correlation between accuracy 

and αi.  The y-axis for each panel indicates the change in the mean and the change in the error 

of the mean, as measured in units of standard deviation.  The top row shows outcomes for a 

right-skewed (log normal) response distribution, and the bottom row shows a symmetrical 

(normal) distribution.  In the left column, the mean of independent responses underestimates the 

truth by 0.5 standard deviations; in the center, the mean equals the truth; and in the right column, 

the mean overestimates the truth.  Theoretical predictions are all consistent with our 

experimental results.  In the skew-right distribution, the median improves in most cases.  Even 

in accurate symmetrical distributions, sample error leaves some room for improvement in the 

median, as shown in Panel E.  N=1,000 nodes per network, 10,000 simulations per point. 
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Fig. S11.  This figure shows the same model parameters as Fig. S9, but with variation in the 

decay (δ) of responsiveness to social influence (1-α) over time.  When revision magnitude 

decrease over time, effect sizes are decreased, but overall effects remain the same.  Light blue 

indicates a rapid decay, while dark blue indicates a slow decay.  When δ=0, the model is 

equivalent to that shown in Fig. S9 and S10.  The value for decay indicates the percent decrease 

of responsiveness to social information (1-α) at each round.  For example, when  δ=0.5, (1-α) 

decreases by 50% each round.  When the decay=0, α and (1-α) both remain constant.  N=1,000 

nodes per network, 10,000 simulations per point 
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Effect of Centralization on Group Accuracy.  To test the effect of network centralization in 

networks of the same size as our empirical trials, we simulated outcomes for a continuous range 

of centralization while holding density and population size fixed in networks of size N=40 in a 

group that underestimates the true value.  To illustrate the effect of the most central node’s 

accuracy on the collective change in the group mean, we condition the results on whether the most 

central node held an initial belief that was in the direction of truth relative to the initial group mean, 

or whether the central node pulled the group away from truth at the initial round (Fig. S8). When 

the most central member held a belief that represented a movement away from truth (Fig. S12, 

bottom set of points), the group mean after social influence decreased with centralization, leading 

 

Fig. S12.  The effect of centralization in networks on the change in the group mean.  These 

simulations reflect a group that underestimates the true value, and therefore an increase in group 

mean indicates a decrease in error. The influence of prominent nodes has a stronger effect on group 

beliefs than the correlation between accuracy and revision magnitude.  Results are plotted based 

on whether or not the core node is in the direction of the true value (green) or away from the true 

value (red).  Centralization cannot be controlled directly in network generating algorithms (see 

text), and results are plotted according to the resulting centralization score for each randomly 

generated network.  N=40 nodes per network, 10,000 repetitions per point.  
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to an increase in error.  When the most central member held a belief that fell in the direction of 

truth (Fig. S12, top set of points), the group mean after social influence increased with 

centralization, leading to a decrease in error.   Each panel in the figure shows one of three 

assumptions about individual error and movement: perfect negative correlation, no correlation, 

and positive correlation.  In decentralized networks, the correlation between accuracy and self-

weight determines the effect of social influence.  While the potential for improvement is greatest 

when centralization is exactly equal to zero, this effect is robust to a small amount of centralization. 

However, as centralization increases, the wisdom of crowds is increasingly determined by the 

belief of the most prominent individual. 

 

 

Fig. S13. The effect of density in networks on the change in the group mean.   These simulations 

reflect a group that underestimates the true value, and therefore an increase in group mean indicates 

a decrease in error.  These networks are generated using the degree.sequence.game algorithm (see 

Experimental and Simulation Network Conditions) and vary only the degree parameter, holding 

network size (and centralization) constant.  The densities of the two networks used in our study 

are noted in both panels: the centralized (box) and decentralized (triangle) networks.  N=40 nodes 

per network, 10,000 simulations per point 
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Robustness to Variation in Density and Average Degree. In contrast to the large effect of 

network centralization, other network properties such as density (Fig. S13) and average degree 

(Fig. S14) have negligible effects on social information and collective accuracy. To test the 

robustness of our experimental results, we simulate outcomes in a range of conditions with 

networks of size N=40.  The simulations hold centralization fixed at 0 and increase the number of 

ties in a random network with homogeneous degree. As density increases, there is a slight increase 

in the change in the median due only to an increase in the speed of convergence (Fig. S13). In the 

long run dynamics, density has no effect asymptotically (as it is determined only by the eigenvector  

of the adjacency matrix for the weighted influence network) and this minimal effect is not enough 

to account for the difference between networks in our empirical observations.  In our experimental 

trials, the effect of network centralization more than overcomes the small effect of density. 

Moreover, whatever effect density does have in our experimental outcomes, it acts in opposition 

to the effects of centralization, making our empirical estimation of the effect of centralization on 

the wisdom of crowds conservative. The densities of the two networks used in our study are noted 

in both panels: the centralized (box) and decentralized (triangle) networks.  

The effects of average degree are similar to the effects of density in direction and 

magnitude for the change in the group mean (Fig. S14). The simulations hold density fixed at 0.05 

(which is the density of the centralized network in our experimental trials), and keep centralization 

at 0 by using random networks with homogeneous degree distributions. Average degree is 

increased by increasing the population size, while holding density fixed. This procedure uses 

population sizes ranging from N=40 to N=1000. We also ran simulations holding density fixed at 

0.1, which is the density of the decentralized network in our study, and the results were 

qualitatively similar. 
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Relationship to Previous Work.  Some research has examined the effect of social influence on 

individual accuracy, but has largely focused on individual outcomes and psychological factors 

(29,30).  In one experiment, teams were found to produce better estimates than isolated individuals, 

but this design was unable to distinguish the mechanisms generating the improvement (9).  In one 

study that examines group accuracy when individuals are exposed to the beliefs of others, Lorenz 

et al (14) present the primary result that social influence “substantially reduces the diversity of the 

group without improving its accuracy.”  They clearly show decrease in diversity as measured by  

standard deviation, an outcome consistent with our own results, and necessary if individuals are to 

improve at all.  While their interpretation rests on the claim that collective error does not decrease, 

  

 

Fig. S14.  The effect of average degree in networks on the change in mean.   These simulations 

reflect a group that underestimates the true value, and therefore an increase in group mean indicates 

a decrease in error.  These networks are random networks where every node has the same degree 

varying N and degree concomitantly in order to hold density constant.  Average degree for 

networks used in our study are noted in both panels: the centralized (box) and decentralized 

(triangle) networks.  10,000 simulations per point. 
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Population Size 

their absence of evidence is not evidence of absence.  Their null result is most likely due to the 

small group size.  Using simulations seeded with their data, we estimate power tests at various 

population sizes.  Fig. S15 suggests that their experimental design did not have sufficient statistical 

power to detect the effects described in our study. Our simulations show that with the population 

size used in their study (N=12), there is more than a 50% chance of a Type II error (power < 50%). 

Only at larger population sizes like the one used in our study (N=40) does the probability of 

detecting a significant effect meet conventional levels of statistical power (i.e., power > 80%). 

To generate Fig. S15, we conducted a power analysis based on their experimental design 

and empirical data.  In their study, groups of 12 individuals answered 6 questions and were given 

5 rounds to revise their answers.  The social information in Lorenz et al. (14) was drawn from a 

decentralized network (fully connected). The theory and results from our study indicate that both 

 

Fig. S15.   Points show the expected experimental power as a function of population size, with a 

dashed line indicating standard design with 80% probability of significant results.  Because the 

wisdom of crowds emerges only in large groups, low population sizes are less likely to reliably 

demonstrate improvement as a result of influence.  With the experimental design implemented by 

Lorenz et al, we estimate greater than 50% probability of type II error.  Each point measures 1,000 

bootstrapped p-values for data drawn from 10,000 simulated trials. 
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individuals and groups should improve when embedded in decentralized networks. While, Lorenz 

et al. (14) conclude that their population exhibited no change in collective accuracy, their own 

analysis is highly suggestive of a positive but not statistically significant reduction in accuracy.  

While they demonstrate clear evidence that populations show herding dynamics as a decrease in 

standard deviation, and that participants increase in confidence, they do not show that groups do 

not improve.   

 These simulations used their experimental design with our theoretical model assuming no 

particular relationship between αi and accuracy.  Based on individual response data, we estimated 

αi as described above.  We simulated 5 responses for 4 trials of 6 questions each, producing a total 

of 24 unique trials with 12 users per trial.  Simulated user responses were drawn from empirical 

distributions associated with each question.  We then conducted simulated tests with varied 

population sizes, generating boot-strapped estimates for the probability of type II error as a 

function of population size.    

The Lorenz et al. (14) data are available at:  

http://www.pnas.org/content/suppl/2011/05/10/1008636108.DCSupplemental/sd01.xls.   
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Table S5.  Summary Data for All Estimation Tasks by Decentralized Networks.   

This table shows the revision coefficient, the change in the error of the mean, the change in the 

error of the median, and the change in standard deviation for each estimation task.  All changes 

are measured by subtracting the value at Round One from the value at Round Three.  The revision 

coefficient is measured as the partial correlation between individual error at Round One and the 

magnitude of the total revision for each individual between Round One and Round Three, after 

controlling for the distance between the estimate at Round One and the average estimate of 

network neighbors at Round One. 

Group ID Task 

Revision  

Coefficient 

Round One to  

Round Three 

Cumulative Change  

in Error of Mean 

Round One  

to Round Three 

Cumulative Change  

in Error of Median 

Round One  

to Round Three 

Cumulative Change  

in Standard Deviation 

Round One  

to Round Three 

2 1e 0.02 0.11 0.00 -0.29 

2 2e 0.15 -0.06 -0.14 -0.37 

2 3e 0.15 0.00 0.01 -0.29 

2 4e 0.92 0.07 -0.04 -0.62 

3 1d 1.00 -0.27 0.00 -1.74 

3 2d 0.32 -0.13 -0.12 -0.03 

3 3d -0.06 -0.09 -0.22 -0.36 

3 4d 0.61 -0.03 -0.24 -0.47 

5 1c 0.28 0.05 -0.07 -0.25 

5 2c 0.33 -0.11 -0.18 -0.11 

5 3c 0.40 -0.01 -0.03 -0.08 

5 4c 0.13 0.04 -0.18 -0.54 

7 1b 0.15 -0.11 -0.09 -0.27 

7 2b -0.27 0.06 0.04 -0.39 

7 3b 0.30 0.06 -0.09 -0.50 

7 4b 0.07 -0.05 -0.08 -0.17 

9 1a 0.11 0.04 0.00 -0.47 

9 2a -0.08 -0.04 0.01 -0.26 

9 3a 0.91 -0.02 -0.11 -1.05 

9 4a 0.24 0.01 -0.07 -0.55 

12 1f 0.00 0.04 -0.13 -0.46 

12 2f 0.46 -0.10 -0.09 -0.35 

12 3f 0.28 -0.13 0.03 -0.29 

12 4f 0.64 -0.15 -0.08 -0.67 

13 5b 0.08 -0.01 0.03 -0.31 

13 6b 0.28 -0.16 -0.27 -0.35 

13 7b 0.38 -0.13 -0.17 -0.40 

13 8b -0.23 0.08 0.10 -0.30 

13 9b 0.24 -0.08 -0.06 -0.34 

16 5a 0.64 -0.30 0.00 -0.54 

16 6a 0.12 -0.06 -0.14 -0.37 

16 7a 0.44 -0.16 -0.30 -0.45 
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16 8a 0.24 0.03 0.00 -0.34 

16 9a 0.07 0.04 0.00 -0.29 

18 5a 0.77 -0.29 -0.25 -0.55 

18 6a 0.33 -0.17 -0.23 -0.41 

18 7a 0.43 -0.26 -0.15 -0.45 

18 8a 0.01 -0.06 -0.24 -0.36 

18 9a -0.46 0.17 0.23 -0.31 

19 5b 0.32 -0.19 -0.12 -0.22 

19 6b 0.07 -0.04 -0.14 -0.30 

19 7b 0.69 -0.26 -0.17 -0.38 

19 8b 0.11 0.08 0.00 -0.47 

19 9b 0.01 -0.04 0.06 -0.50 

22 5a 0.70 -0.41 -0.19 -0.65 

22 6a 0.56 -0.21 -0.35 -0.49 

22 7a 0.63 -0.23 -0.20 -0.30 

22 8a 0.05 0.17 -0.09 -0.49 

22 9a 0.36 -0.12 -0.33 -0.34 

23 5b 0.17 0.02 0.00 -0.24 

23 6b 0.12 -0.18 -0.18 -0.36 

23 7b 0.81 -0.33 -0.21 -0.54 

23 8b -0.08 0.10 0.21 -0.35 

23 9b 0.06 -0.10 -0.19 -0.39 

24 5a 0.71 -0.38 -0.32 -0.58 

24 6a 0.33 -0.07 -0.14 -0.32 

24 7a 0.32 -0.23 0.00 -0.25 

24 8a 0.16 0.06 0.06 -0.28 

24 9a -0.40 0.16 0.00 -0.26 
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Table S6.  Summary Data for All Estimation Tasks by Centralized Networks.   

This table shows the change in the error of the mean, the change in the error of the median, and 

the change in standard deviation for each estimation task.   All changes are measured by subtracting 

the value at Round One from the value at Round Three.  For each estimation task, the third column 

(“Central Node Belief in Right Direction?”) indicates whether the central node was in the direction 

of truth relative to the group mean, as shown in Fig. S8.  Complete experimental data is available 

as a Supporting Data file. 

 

Group ID Task 

Central Node 

Belief in Right  

Direction Relative 

to Mean? 

Cumulative Change  

in Error of Mean 

Round One to  

Round Three 

Cumulative Change  

in Error of Median 

Round One to 

Round Three 

Cumulative Change  

in Standard Deviation 

Round One to 

Round Three 

1 1e No 0.22 0.00 -0.48 

1 2e Yes -0.58 -0.64 -0.19 

1 3e Yes 0.06 0.20 -0.87 

1 4e No 0.01 0.00 -0.05 

4 2d No 0.29 0.26 -0.56 

4 3d Yes -0.24 -0.43 -0.41 

4 4d Yes 0.07 0.05 -0.16 

6 1c Yes 0.07 -0.08 -0.94 

6 2c No 0.24 -0.12 -1.08 

6 3c Yes 0.01 -0.04 -0.11 

6 4c No 0.35 0.63 -0.17 

8 1b No 0.49 0.69 -0.41 

8 2b No 0.14 0.14 -0.20 

8 3b No 0.04 -0.04 -0.23 

8 4b No 0.21 0.07 -0.88 

10 1a No -0.04 0.05 0.07 

10 2a Yes -0.15 0.05 -0.41 

10 3a No 0.18 0.22 -0.18 

10 4a Yes -0.12 -0.34 -0.64 

11 1f No -0.12 0.05 0.11 

11 2f Yes -0.08 0.41 -0.25 

11 3f Yes 0.11 0.20 -0.31 

11 4f Yes -0.07 -0.18 -0.32 

14 5b No 0.44 0.54 -0.47 

14 6b Yes -0.19 -0.23 -0.53 

14 7b Yes -0.28 0.00 -0.52 

14 8b Yes -0.27 -0.34 -0.53 

14 9b Yes -0.64 -0.82 -0.15 

15 5a No 0.04 0.25 -0.34 

15 6a No 0.25 0.23 -0.12 

15 7a Yes -0.60 -0.50 -0.53 
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15 8a No 0.40 0.60 -0.54 

15 9a No 0.26 0.36 -0.34 

17 5a Yes -0.13 0.00 -0.20 

17 6a Yes -0.06 -0.02 -0.35 

17 7a No -0.07 0.00 -0.27 

17 8a No 0.57 0.78 -0.40 

17 9a No 0.06 0.00 -0.29 

20 5b No 0.22 -0.15 -0.46 

20 6b Yes 0.29 0.50 -0.57 

20 7b No 0.06 0.42 -0.54 

20 8b Yes -0.57 -0.69 -0.25 

21 5a Yes -0.50 -0.13 -0.63 

21 6a No -0.11 -0.33 -0.50 

21 7a Yes -0.52 -0.80 -0.53 

21 8a Yes 0.09 -0.06 -0.35 

21 9a No 0.24 0.33 -0.36 

25 5a Yes -0.51 -0.32 -0.63 

25 6a Yes -0.58 -0.94 -0.52 

25 7a Yes -0.19 -0.25 -0.33 

25 8a Yes -0.20 -0.60 -0.24 

25 9a No 0.19 0.33 -0.24 

26 5b Yes -0.63 -0.48 -0.38 

26 6b Yes -0.18 -0.14 -0.32 

26 7b No -0.29 0.33 -0.69 

26 8b No 0.36 0.34 -0.46 

26 9b Yes -0.80 -0.95 -0.11 
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Table S7.  Summary Data for All Estimation Tasks by Control Subjects 

This table shows the change in the error of the mean, the change in the error of the median, and 

the change in standard deviation for each estimation task.  All changes are measured by subtracting 

the value at Round One from the value at Round Three.  Complete experimental data is available 

as a Supporting Data file. 

 

Group ID Task 

Cumulative Change in 

Error of Mean 

Round One to 

Round Three 

Cumulative Change in  

Error of Median 

Round One to 

Round Three 

Cumulative Change in 

Standard Deviation 

Round One to 

Round Three 

27 1a 0.06 0.00 -0.21 

27 2a 0.44 0.04 2.24 

27 3a -0.07 -0.02 0.12 

27 4a -0.06 0.07 0.15 

28 5a -0.24 -0.19 0.10 

28 6a -0.25 0.00 -0.17 

28 7a 0.01 0.00 0.00 

28 8a 0.14 0.00 -0.08 

28 9a 0.10 0.00 -0.08 

29 1b 0.12 0.19 -0.09 

29 2b -0.01 -0.10 -0.07 

29 3b 0.05 -0.18 -0.24 

29 4b -0.01 0.08 0.00 

30 5b -0.06 -0.06 -0.21 

30 6b -0.09 0.00 -0.13 

30 7b -0.06 0.00 -0.08 

30 8b 0.10 0.14 0.08 

30 9b -0.22 -0.19 -0.03 

31 1c 0.11 -0.07 -0.47 

31 2c -0.25 -0.09 0.47 

31 3c -0.14 -0.01 -1.62 

31 4c 0.05 -0.11 -0.14 

32 1d 0.00 0.00 0.00 

32 2d 0.03 0.05 -0.03 

32 3d -0.10 -0.03 0.13 

32 4d -0.05 0.08 0.06 

33 1e -0.16 -0.17 -0.04 

33 2e 0.06 0.02 -0.02 

33 3e 0.00 -0.09 -0.08 

33 4e 0.02 0.02 -0.05 

34 1f 0.02 0.12 0.00 

34 2f 0.16 0.08 0.11 

34 3f 0.02 0.17 -0.86 

34 4f 0.06 0.01 0.38 
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