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Abstract

Do efficient communication networks accelerate solution discovery? The most prominent

theory of organizational design for collective learning maintains that informationally efficient

collaboration networks increase a group’s ability to find innovative solutions to complex

problems. We test this idea against a competing theory that argues that communication

networks that are less efficient for information transfer will increase the discovery of novel

solutions to complex problems. We conducted a series of experimentally designed Data Sci-

ence Competitions, in which we manipulated the efficiency of the communication networks

among distributed groups of data scientists attempting to find better solutions for complex

statistical modeling problems. We present findings from 16 independent competitions,

where individuals conduct greedy search and only adopt better solutions. We show that

groups with inefficient communication networks consistently discovered better solutions. In

every experimental trial, groups with inefficient networks outperformed groups with efficient

networks, as measured by both the group’s average solution quality and the best solution

found by a group member.

Introduction

Organizational communication networks are essential for solution discovery among collabora-

tive groups. Engineers [1,2], medical researchers [3], and scientists [4] all rely on networks of

colleagues and collaborators to discover innovative approaches to complex problems. Commu-

nication networks can be particularly important for organizations that face challenging search

environments, in which group members must invest time and resources to discover and evalu-

ate unproven ideas. To mitigate the costs and potential risks associated with these search efforts,

organizations can invest in creating a dense network of ties among collaborators and colleagues

to facilitate the discovery process [5,6]. We focus on collective learning environments where

individuals face strong incentives to show continual solution improvement at each step. These

include business contexts with social pressure for continual improvement, fields with well-
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established standards and best practices that discourage exploration, and cultures with norms

against causing harm or where litigious practices discourage risky, new solutions.

One of the most influential theories of organizational communication has argued that the

more efficient these communication networks are for information diffusion—i.e., the lower

the “degrees of separation” between actors [7]–the more effective research groups will be at

collaborating to discover innovative solutions to complex problems [8,9]. Here, “efficiency”

refers to the average number of steps between members of the group, which is measured by

the network’s characteristic path length. In support of this thesis, researchers have observed

that not only does a highly efficient communication network increase the rate at which infor-

mation about new discoveries can spread between group members [10–12], but it also facili-

tates coordination between colleagues [13,14] and reduces the search costs to find solutions

discovered by others.

Despite the intuitive appeal of this theory, a contending theory argues that greater efficiency

in communication and collaboration networks can unexpectedly reduce the rate of solution

discovery. This theory suggests that while increasing the efficiency of an organizational net-

work will improve the spread of existing solutions, it can also unintentionally limit the ability

of group members to discover new solutions [15–18]. The basic idea behind this hypothesis is

that the faster solutions of moderate quality diffuse through an organization, the more likely

groups will abandon novel and unproven ideas, and settle for an existing solution rather than

working to discover groundbreaking innovations [17]. Findings from the groupthink literature

offer support for this idea [19,20]. This theory offers a striking prediction: Organizations with

less efficient communication networks will yield greater rates of solution discovery for com-

plex problems [17].

This paper examines the effect of network efficiency—measured by the average number of

network steps between the members of the group—on the quality of the solutions that the

group discovers. The theoretical and practical importance of understanding how communica-

tion networks impact an organization’s capacity to discover novel solutions to challenging

problems has been widely appreciated [4,21,22]. However, the empirical evidence offers con-

flicting support. Previous experimental studies of how communication networks affect organi-

zational innovation have produced findings that support both the theory of efficient networks

[23], as well as the theory of inefficient networks [18,24,25]. The lack of clear evidence has

raised doubts as to whether there is any direct causal connection between the efficiency of

communication networks and the rate of solution discovery [26]. This skepticism is due in

part to the fact that observational studies of problem solving on scientific and industrial teams

have been unable to identify the direct causal effects of network efficiency on the process of

solution discovery [8]. Additionally, past experimental studies of collective problem solving

provided communication signals that do not clearly distinguish popularity from solution qual-

ity, and they were unable to study groups of researchers tackling complex problems within

competitive real-world environments [18,23,24]. Our study implements the key elements of

the theoretical model about the effect of network efficiency on solution quality. These include:

1) individuals search for new solutions in a greedy, incremental process; 2) individuals are

incentivized to always improve; and 3) communication between team members consists only

of information about solution quality with an ability to adopt a neighbor’s solution [17]. Relax-

ing elements of this model have led to conflicting results in the literature.

Materials and methods

We addressed the difficulties of identifying the effects of network efficiency on group perfor-

mance by studying the process of solution discovery among distributed groups of data
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scientists and statisticians, who were recruited from data science working groups and univer-

sity statistics departments around the world, and who participated in a series of Data Science

Competitions. The study was approved by the Institutional Review Board at the University of

Pennsylvania (Protocol #821916), and online consent was obtained from participants. Our

experimental study used an in vivo design based on previous data science competitions, such

as the Netflix Prize (http://www.netflixprize.com) and Kaggle (http://www.kaggle.com), which

connect global teams of data scientists to accelerate breakthroughs in machine learning, artifi-

cial intelligence, and statistical and computational analysis. Such competitions offer an ideal

situation to test theories of communication efficiency on collective learning because the groups

are fully distributed and the researcher can have complete control over the efficiency of group

collaboration. Participants in the competitions were recruited from university statistics and

social science programs and from online forums devoted to statistics and data science. They

were skilled in statistics and reported taking an average of 3 upper-level statistics courses.

Their assigned task in the competitions was to build predictive statistical models for complex

data sets (see S1 File). They were rewarded financially based on the accuracy of their models’

predictions, up to a maximum of $10.

In each experimental trial, participants were randomly assigned to one of two groups com-

posed of anonymous participants. The structure of the communication networks between

group members varied according to experimental condition, and we focused on manipulating

characteristic path length among networked groups that formed a connected component. To

test the theory of network efficiency, we chose two networks that differed along the continuum

of characteristic path length (see S1 File for details on the network measures). As shown in

Fig 1, participants were randomized to either an efficient communication network—a fully

connected network in which each participant was connected to all other members—or an

inefficient network, in which participants could only see the solutions among their four imme-

diately adjacent “neighbors” within a one-dimensional lattice topology (S1 File). Among net-

works with a minimum degree of 4, these networks are at opposite ends of the continuum of

characteristic path length. We selected these networks because the theoretical model predicts a

Fig 1. Network structures used in the two experimental conditions. The efficient network was a fully connected

network (left), and the inefficient network was a one-dimensional lattice where each node was connected to its

immediate four closest neighbors (right).

https://doi.org/10.1371/journal.pone.0237978.g001
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monotonic progression in performance as a function of path length, so if we can understand

these two networks, then we can place boundaries around the impact of network structure on

solution quality.

To maintain interface parity between conditions, we applied a ranking window (displayed

as a “Leader Board”) to the efficient network so that participants only saw the top four solu-

tions among all of their connections. As a result, individuals in both conditions had the same

amount of information to process, but the effective path length differed between the two

conditions.

We conducted 8 experimental trials, comprising 16 competitions in total. Each trial con-

sisted of two simultaneous competitions: one group with an inefficient communication net-

work, and one with an efficient network. 7 trials (14 competitions) were conducted with

groups of size N = 10 (140 participants in total), and the final trial (2 competitions) had groups

of N = 20 (40 participants in total). Overall, 180 data scientists participated in this study.

In each trial, groups of participants were given a challenging statistical modeling problem

that required searching a high-dimensional space in order to find the best predictors to include

in a statistical model. For instance, in one trial participants had to predict the weekly sales vol-

ume for a Fortune 500 company, and were given 14 statistical parameters to choose between,

offering 16,384 potential solutions. Subjects could explore the data set using a custom research

platform that was accessed via a Web browser.

Each competition lasted for 15 rounds. In each round, participants had to choose whether

to test out a new solution (i.e., explore the space of solutions) by using the interactive analysis

tool to submit a new predictive model, or to adopt an existing solution already discovered by

another member (i.e., exploit an existing solution). To explore the solution space, participants

incrementally revised their existing solution by adding or removing a variable in their model.

They were able to use graphical and statistical analysis tools provided within the interface to

estimate the improvements created by these changes (for screenshots of the interface see S2–S7

Figs).

Conversely, when participants decided to exploit another’s solution, their previous solution

was replaced with the copied one. Thus, while exploration was incremental—i.e., participants

searched locally through the complex space of potential solutions—exploitation was global—

i.e., allowing participants to adopt any solution, and therefore “leap” to an entirely new part of

the solution space without having to traverse the intervening steps in the complex landscape.

This design accurately represents search processes used by individuals and organizations in

competitive situations where exploration requires a substantial investment. In these situations,

actors explore incrementally, rather than randomly exploring new ideas [6,27–29] (see S1

File). To ensure the robustness of this design, we tested this assumption using additional simu-

lations (S1 File), which show that adding noise to actors’ decisions, thereby allowing individu-

als to move randomly to lower quality solutions, does not qualitatively affect the network

dynamics that we report here [17].

Because our study focused on situations where individuals have strong incentives to always

improve, we built several features into the interface to incentivize improvements. First, strong

social signals in the form of a “Leader Board” displayed the scores of other participants in com-

parison to each user’s score. This informed participants that better scores were possible. Sec-

ond, when participants explored a solution and the outcome was worse than their current

solution, a pop-up box informed them of the new worse score, and the system returned them

to their original (better) solution. Collectively, these features guided participants toward better

solutions throughout the trials.

In each trial, the complexity of the problems that participants solved was defined by the rug-

gedness of the solution landscape [17,30]. All problems were “complex” in the sense that the
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statistical variables that participants could explore shared a pattern of correlations and interac-

tions that created a high degree of interdependency among the components of each solution

[30]. Consequently, any decision to include or remove one variable affected the decisions that

were made about every other variable (S1 File). Consistent with most complex problems in sci-

entific discovery and technological innovation [31], we used discrete combinatorial optimiza-

tion problems that constituted “rugged fitness landscapes” [30]–i.e., there were many locally

optimal solutions, which made it difficult to find the globally optimal solution (S1 File).

Each of the eight experimental trials used a unique problem. Within each trial, both groups

were given the same problem. The set of starting solutions for the participants—i.e., the ran-

domly assigned distribution of group members’ initial positions in the problem space for each

group—was identical across the members of both groups, ensuring that both groups had iden-

tical initial conditions. The features of the social network, such as the average path length and

the size of the population, were unobservable to participants. More generally, in every trial, all

aspects of the participants’ experience were identical across experimental conditions. The only

difference across conditions was the structure of the collaboration networks, which was not

visible to the subjects. Eight replications of this experimental design produced eight indepen-

dent pairs of competitions. Our analysis uses paired statistical tests to evaluate the effects of

network structure on the quality of scientific discovery across all eight trials. This is a standard

way of evaluating causal effects across replicated, pairwise experimental trials to increase the

efficiency of the statistical analysis. All statistical tests were conducted at the group-level. (Fur-

ther details of the statistical tests are available in the S1 File).

Results

The results show that network structure had a significant effect on the quality of the solutions

that were discovered. In every trial, groups with inefficient communication networks signifi-

cantly outperformed those with efficient networks.

We used two complementary metrics to evaluate collective performance. First, we mea-

sured the best overall solution discovered within each network, which reports the highest level

of innovation that each group achieved in searching the problem space. There are many “win-

ner-take-all” situations in which groups are rewarded only for their best solution, such as an

engineering team where only one solution can be implemented. Second, we measured the

mean quality of the solutions among all the members of each group, which captures the diffu-

sion of good solutions by measuring the average performance of all members of each group.

There are many situations were groups are rewarded when all members perform better, such

as in sales organizations where every member’s performance aggregates up to the group’s

performance.

Fig 2 reports the best solution discovered in every trial. This value is scaled based on the

best possible solution to the problem (Performance = 1) compared to both group’s starting

performance within a trial (Performance = 0). The results show that by the end of the competi-

tion, inefficient collaboration networks significantly and consistently improved the best overall

solutions that groups discovered in all eight trials (p = 0.008, Wilcoxon signed-rank test, two-

sided, n1 = n2 = 8). On average, across all trials, the best solution in groups with inefficient

networks was 20% better than the best solution in groups with efficient networks. More strik-

ingly, while none of the groups with efficient networks ever discovered the optimal solution, in

50% of the trials (i.e., Trials 5, 6, 7, and 8), groups with inefficient networks found the global

optimum.

To examine the effects of collaboration networks on the average quality of individuals’ solu-

tions, in each trial we measured the average (mean) performance for the members of both
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groups over the course of each round. We found significant differences in the group dynamics

across experimental conditions. Immediately after the initial round (i.e., Round 1) of each

trial, the average solution among groups with efficient networks was 69% better than among

groups with inefficient networks (p = 0.02, Wilcoxon signed-rank, two-sided, n1 = n2 = 8).

This is because efficient networks quickly converged on the best available solution, which rap-

idly improved the performance of everyone in the group. However, this early advantage of

efficient networks did not last long. In inefficient networks, subsequent discovery of better

solutions, and diffusion of those solutions, led to rapid improvements in the average perfor-

mance of all group members.

To illustrate these dynamics, Fig 3 shows the complete temporal sequence of solution dis-

covery within a single trial (i.e., Trial 6) for both experimental conditions. In Rounds 1 and 2

(Panels A and B of Fig 3), individuals in the efficient network converged rapidly on a few

Fig 2. Best solution discovered in 8 experimental trials. In each of the eight experimental trials, groups with inefficient networks (orange) found better

solutions than groups with efficient networks (blue). Within each trial (1–8), both groups were given the same data set and prediction problem, and began

with identical initial solution distributions across the population. Across each trial, different data sets and prediction problems were used. Figures for each

trial are scaled based on the best possible solution to the problem (Performance = 1) compared to both groups’ average starting performance within a trial

(Performance = 0). In trials 5, 6, 7, and 8, the groups in inefficient networks found the best possible solution, which was never found in any group with an

efficient network.

https://doi.org/10.1371/journal.pone.0237978.g002
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Fig 3. Temporal sequence of solution discovery for all members of both groups in a single trial. Solution quality in

rounds t = 1, 2, 5, 10, and 15 (A to E) in a single trial (i.e., Trial 6). In the initial rounds, (A) t = 1, and (B) t = 2,

individuals in the efficient network (blue) converged on a small set of solutions, whereas individuals in the inefficient

network (orange) explored a greater diversity of solutions. (C) t = 5, the individuals in the efficient network showed

little improvement, whereas individuals in the inefficient network had greater solution diversity and better solution

quality. (E) t = 15, nearly every member of the inefficient network had converged on the best solution, whereas those in

the efficient network showed little improvement from their initial solutions. Performance is scaled based on the best

possible solution (Performance = 1) compared to both group’s starting performance (Performance = 0).

https://doi.org/10.1371/journal.pone.0237978.g003
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solutions that were of moderate quality. In contrast, individuals embedded in the inefficient

network had more diverse solutions in the initial rounds, with a lower average quality. Conse-

quently, most members in the efficient network outperformed members of the inefficient net-

work during the initial rounds. However, because inefficient networks were not as fast to

converge, they were able to sustain a greater diversity of solutions early on. This permitted

individuals to explore new parts of the problem space, including outlier solutions that outper-

formed any of the early innovations discovered in the efficient network. As a result of this

increased diversity in the exploration space, groups with inefficient networks quickly found

better solutions. Fig 3 shows that by Round 5 (Panel C), most individuals in the inefficient

network had already found better solutions than the best solution discovered in the efficient

network.

By Round 10 (Panel D), members of the efficient network showed little improvement from

their early solutions, while a majority of participants in the inefficient network were approach-

ing the globally optimal solution. By the end of the trial (Panel E), every member of the ineffi-

cient network adopted a solution that was better than the best solution found in the efficient

network. Across all trials the same general dynamics were observed. (All eight times series are

displayed in S8 Fig) In every trial, by the final round not only did the inefficient network dis-

cover a better overall solution, but the average solution among all individuals in inefficient

networks was significantly better than the average solution among all subjects in efficient net-

works (p = 0.008, Wilcoxon signed-rank, two-sided, n1 = n2 = 8).

An intuitive explanation for these findings is that individuals in inefficient networks spent

more time exploring, and less time exploiting, than individuals in efficient networks [23].

However, there was no difference in the fraction of exploration decisions across experimental

conditions (p = 0.95, Wilcoxon signed-rank, two-sided, n1 = n2 = 8). Instead, differences in

group performance were a result of a trade-off between solution diffusion and solution diver-

sity. By reducing the speed at which moderately good solutions could spread early on, ineffi-

cient networks increased the overall diversity and quality of solutions that could be discovered

through individuals’ explorations. Thus, while the amount of individual exploration behavior

was the same in both networks, in inefficient networks, people were more widely dispersed in

the solution space, so the same number of explorations produced more innovation.

Fig 4 (Panel A) demonstrates the speed-quality tradeoff in efficient networks. Efficient net-

works spread moderate solutions rapidly to the group, but they became locked in on sub-opti-

mal solutions. The figure shows the average rate across all trials in which the best available

solution diffused through each networked group. In efficient networks, the best available solu-

tion diffused rapidly. 64% of participants immediately copied this solution on Round 1. As a

result, all of these participants were located in the same part of the solution space. By contrast,

Panel B shows that slower diffusion of existing solutions in inefficient networks resulted in a

faster rate of discovery of a greater number of solutions. Overall, groups with inefficient net-

works discovered a significantly larger portion of the solution space, on average finding

36% more solutions than efficient networks (p = 0.02, Wilcoxon signed rank test, two-sided,

n1 = n2 = 8).

The consequence of this broader range of exploration (Fig 4, Panel C) is that throughout

the competitions the best solution available to members of inefficient networks was, on aver-

age, better than the best solution available to members of efficient networks. As good solutions

diffused, the preservation of diversity translated into a strong individual-level advantage for

members of inefficient networks (Panel D). By Round 8, on average, 58% of participants in

groups with inefficient networks had found solutions that were better than the best solution

found in the corresponding efficient network. These dynamics of solution discovery were con-

sistent across all eight experimental trials. By the conclusion of all trials, an average of 84% of

PLOS ONE Impact of network structure on collective learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0237978 September 4, 2020 8 / 13

https://doi.org/10.1371/journal.pone.0237978


Fig 4. Time series showing the tradeoff between diffusion and diversity. The dynamics of solution discovery in groups with efficient (blue dashed) and

inefficient (orange solid) networks shows that inefficient groups performed better in terms of solution diversity (A and B) and solution quality (C and D).

All panels plot the average values for each experimental condition over all eight trials. In groups with efficient networks, good solutions rapidly spread to

other group members, whereas diffusion was slower in inefficient groups (A). Diffusion is measured by the fraction of individuals who adopted the best

available solution in the group over time. Due to this slower rate of diffusion, groups with inefficient networks discovered more distinct solutions (B), and

the quality of the best solutions in these groups was much higher, both in terms of the value of the best solution found (C) and the fraction of the

population that adopted a solution that was better than the best available solution from the other network (D).

https://doi.org/10.1371/journal.pone.0237978.g004

PLOS ONE Impact of network structure on collective learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0237978 September 4, 2020 9 / 13

https://doi.org/10.1371/journal.pone.0237978.g004
https://doi.org/10.1371/journal.pone.0237978


subjects in inefficient networks had solutions that were better than the best solution found in

the corresponding efficient network.

Discussion

Our experimental results conflict with past studies of solution discovery that emphasize the

importance of network efficiency both for accelerating the spread of good ideas through com-

munities of researchers [32] and for increasing the rate of technological innovation diffusion

[12]. In contrast, our study finds a tradeoff between the network structures that promote a

solution’s rapid diffusion throughout a group [12,24] and the network structures that promote

the discovery of innovative solutions among that group [17,18]. We found that by slowing

down the information diffusion process, inefficient networks preserved the diversity of the

space of exploration, thereby leading to the discovery and diffusion of better solutions. Fortu-

nately, our results show that both “winner-take-all” situations where only the best solution is

implemented and situations where the performance of each member is important in terms of

mean performance provide similar support for inefficient networks over efficient ones.

Our findings suggest a cautionary conclusion concerning efforts to increase the efficiency

of organizations’ communication networks [33]. Recent initiatives among organizational lead-

ers have supported industry efforts to deploy enterprise social networking software to acceler-

ate the speed of communications among group members. Our results indicate that while these

efforts can indeed facilitate the rapid diffusion of good solutions, they may have the unin-

tended consequence of leading to premature convergence, which can limit the exploration of

complex solution spaces. As a means of managing these effects of network structure on collec-

tive learning, organizations could incentivize individuals to hold diverse and even inferior

solutions. When this is impossible to institute, our results suggest another strategy: reductions

in the frequency of meetings and the size of working groups can be used to moderate the effec-

tive structure of the communication networks among group members.

Supporting information

S1 File.

(DOCX)

S1 Fig. Schema of the experiment.

(TIF)

S2 Fig. Screenshot of the experimental interface when a subject explored their model. The

image is similar but not identical to the experimental interface in that a university logo has

been removed.

(TIF)

S3 Fig. Screenshot of the experimental interface when a subject chose to copy a better solu-

tion. The image is similar but not identical to the experimental interface in that a university

logo has been removed.

(TIF)

S4 Fig. Screenshot of the experimental interface when a subject finished a round and

adopted a better solution. The image is similar but not identical to the experimental interface

in that a university logo has been removed.

(TIF)

S5 Fig. Screenshot of the experimental interface when a subject finished a round and tried

to adopt a worse solution. The image is similar but not identical to the experimental interface
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in that a university logo has been removed.

(TIF)

S6 Fig. Screenshot of the experimental interface when a subject finished a round and sub-

mitted the same solution. The image is similar but not identical to the experimental interface

in that a university logo has been removed.

(TIF)

S7 Fig. Screenshot of the experimental interface when a subject ran out of time on a round.

The image is similar but not identical to the experimental interface in that a university logo

has been removed.

(TIF)

S8 Fig. Solution quality a times t = 1,2,5,10, and 15 in all eight trials.

(TIF)

S9 Fig. Simulations showing the effects of a random noise in agents’ decisions on the per-

formance of inefficient and efficient networks. The performance of teams relative to the best

group performance (i.e., 0 probability of making a random solution choice) is plotted against

the probability of making a random choice on each turn.

(TIF)

S1 Table. Descriptive statistics of the data sets used in the study.

(DOCX)

S1 Dataset. Dataset of all user solutions and actions in the experiment. Compressed (.zip)

archive containing the data set in .csv format and a README.txt file explaining the columns.

(ZIP)
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