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Materials and Methods 
Experimental Design 

Subjects were randomly assigned to a fully-connected network (i.e., homogeneously 
mixing population) containing a pre-determined number of experimental participants and 
confederates.  The number of confederates as a fraction of the total population was varied between 
conditions.  Our theoretical model predicts a tipping point with approximately 25% of the 
population.  To test this effect, we ran 5 trials with fewer than 25% confederates (“below 
threshold”) and five trials with greater than 25% confederates (“above threshold”).  Because users 
had no way of distinguishing confederates from experimental participants, the user experience in 
below-threshold conditions was identical to the user experience in above-threshold conditions. 

Experimental trials consisted of two phases.  Once a trial began, the first phase of the 
experimental procedure (see “Subject Experience During the Experiment” below) was allowed 
subjects to interact until they established a shared social convention.  This phase used the 
procedures from  previous research on the emergence of conventions (18).  During this phase, 
confederate participants entered no response, except during trials 3 and 4, in which they played a 
single pre-determined strategy during phase one to speed up initial convergence.  Phase one was 
considered complete when every experimental participant began using the same strategy, with at 
most two players deviating.  This determination was based on previous experimental methods for 
identifying convergence on social conventions (18), which indicated that even once a stable 
convention is established, not all players will always use the conventional strategy. 
 Once an endogenous convention was reached, the confederate participants simultaneously 
began entering a pre-determined response that differed from the established convention.  All the 
confederates used the same response.  In order to ensure that the alternative response was 
comparable to the established convention, we used responses selected from names that commonly 
emerged as conventions in previous studies (e.g., “Mary”).  Confederate participants continued 
entering this alternative strategy until the game was complete.   

The length of an entire experimental trial was determined prior to play beginning.  Due to 
stochastic variation in the length of the first experimental phase, consistent with previous research 
on the emergence of conventions (18), the number of interactions available for Phase 2 varied 
between trials.  The number of interactions also varied because subjects entered responses at 
different rates, and the trials were run until each player participated in a minimum number of 
interactions. 
 
Subject Recruitment 

Participants in our study were recruited via the World Wide Web to be players in online 
games for research purposes.  Players registered by providing their email address and selecting a 
username and an avatar.  All players were required to provide informed consent in order to register.  
Once registered, users were placed into a recruitment pool for future experiments.  Registered 
users were then sent an advertisement and a link to participate in a trial for this study.  Trials were 
run over a 105 day period between July 15, 2015, and October 7, 2015. 
 
Subject Experience During the Experiment 
 Upon arriving at the study website, participants viewed instructions on how to play the 
game (Figure S1).   In the game, participants play a series of one-shot coordination games, as 
shown in Figure S2.  The left hand column shows the other players in the game.  However, they 
have no information about which player (“partner”) they are matched with for a given interaction.  
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Participants cannot identify whether they are matched with another experimental participant or a 
confederate.  They cannot identify if their partner for a given interaction is the same as their partner 
in a previous interaction. 
 For each one-shot game, participants are shown an image (a picture of a man or a woman) 
and prompted to enter a name in the response field.  There is one picture per trial—i.e., the picture 
does not change across interactions and remains the same for all the interactions within the same 
experimental trial. Participants are instructed that if they enter the same name as their partner, they 
will be rewarded $0.10.  If they do not enter the same name as their partner, $0.10 is deducted 
from their total winnings, with a minimum possible reward of $0.00.  On the right hand side, 
participants are shown their progress in the game.  Completed interactions indicate whether the 
interaction was a match.  After each interaction, participants are shown the name entered by their 
partner, regardless of whether or not it was a match.  Centola & Baronchelli (18) showed that by 
this process, subjects will successfully establish a shared convention; i.e., this process leads 
subjects to converge on a single shared name for the person depicted in the image.  
 

Supplementary Text 
Model Definition 

Our theoretical model follows previous theoretical models of critical mass in studying 
asynchronous pairwise interaction (14,25).  However, while these prior models assume that agents 
randomly select from previously observed strategies, we follow game theoretic models of 
convention (9) in modeling strategic choice in which individuals attempt to choose the behavior 
most likely to generate successful coordination.   

In each time step, two agents from a population of N agents are randomly selected to 
interact.  One agent is randomly selected to be the “speaker” and the other agent is assigned the 
role of “hearer.”  The agent playing the role of speaker picks a best response strategy.  The best 
response strategy is defined as the strategy most frequently observed in previous interactions in 
which that agent was the hearer.  An agent’s “memory” stores a record of the strategies observed 
in use by other players, and an agent only updates their memory during interactions in which they 
are the hearer.  Agents do not respond to a complete history of past plays; rather, we assume that 
agents determine their best response strategy based only on the past M interactions.  The agent 
decision rule is therefore defined by the single parameter M that determines the size of an agent’s 
memory.  This limit reflects both the assumption that agents have limited cognitive resources and 
also the assumption that recent interactions are more informative of population behavior (9). 

The formalization of memory as a sliding window within a vector of past plays was chosen 
in order both to be consistent with previous theoretical research in evolutionary game theory (9) 
and also to maintain a parsimonious model with minimal degrees of freedom.  Other possible 
formalizations for memory include a continuous decay model.  This model was not selected for 
this study because it would involve more degrees of freedom to specify a decay function and 
associated parameters.  As a simple approximation, we find that a sliding window formalization 
correctly predicts approximately 80% of user plays.  Thus far, we have not found that any 
alternative model provides a better fit with the empirical data. 

Following a standard procedure from the literature (14), we model a scenario in which a 
population has already converged on some convention, so that every agent uses some previously 
established strategy ‘A’, such that A is the only option contained in each agent’s memory.  The 
simulation is therefore initialized so that every non-committed agent has a memory that contains 
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only A (i.e., each non-committed agent begins the simulation with a memory as if they had 
observed A for the previous M interactions).  Our simulation studies the dynamics that occur when 
some fraction of that population begins to use an alternative strategy ‘B’ instead of following best-
response dynamics.  This committed minority always uses a single fixed strategy B when they are 
selected as speaker instead of using a best response strategy.  Thus, we simulate the effect of a 
committed minority using strategy B in a population with an established convention A.  With the 
exception of the decision heuristic used by non-committed agents, our model is identical to that 
studied by Xie et al. (14), which is itself identical to Baronchelli et al. (25).  The best-response 
decision-rule for non-committed agents is identical to that studied by Young (9). 

We consider a population of N agents.  Some fraction C of the total N agents are identified 
as committed agents who always play B.  At time T=0, the agents playing best-response dynamics 
(i.e., non-committed agents) are initialized with a memory vector of length M, the entries of which 
are all A.  The model is fully defined by the following parameters: 

• N:  the number of agents 
• C:  the fraction of the population belonging to the committed group 
• M:  the number of past interactions used in agent decisions 

This model defines a Markov chain with only one absorbing state: the state in which the 
entire population has adopted the strategy promoted by the committed minority.  However, this 
will only occur in infinite time when the committed minority is small (14).  In finite time, the 
model is characterized by two states.  Above the tipping point, the alternative strategy promoted 
by the committed minority is very quickly adopted by the entire population.  Below the tipping 
point, the model reaches a quasi-stationary state in which the initial convention is the dominant 
convention for very long periods of time (14). 
 We therefore measure the tipping point in simulation by simulating T=1000*N interactions  
(i.e., to allow an average of 1000 interactions per agent) and then calculating the percentage of 
non-committed agents who have adopted the alternative strategy. Results are only minimally 
perturbed by larger values of T. 
 
Estimating Memory Length 
 To develop our experimental hypotheses, we used data from previous experiments on the 
same web platform (18) to estimate the value for M by determining the value for which the model 
most accurately predicts user behavior.  We then replicated this analysis for experimental data 
from this study, producing comparable results.  Figure S3 shows the fraction of user choices which 
are accurately predicted by the model as a function of M.  To generate this figure, each user’s play 
was predicted for each interaction based on their M previous observations.  We then plot the total 
fraction of interactions which were correctly predicted for each value of M.  Using this parameter 
estimation, we predict a lower bound of M=12 for users in our experimental platform. 
 
Tipping Point 
 Coordination dynamics show a tipping point similar to that observed by Xie et al. (14) even 
after accounting for strategic choice.  Using the lower bound estimate M=12, we model short term 
and long term success of committed groups using strategy B in a population playing A, across 
range of committed minority sizes P and population sizes N.  Figure S4 shows adoption by non-
committed agents after T=45, T=100, and T=1000 “rounds” in a population of N=1,000 agents.   
To normalize time across variation in population size, each time step (“round”) is measured as N 
interactions, or one interaction per agent.  To generate this figure, we initialize the simulation as 
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described above and run for N*T interactions (i.e., T rounds).  We measure adoption as the usage 
of each strategy in the N interactions prior to measurement.  We then plot the fraction of non-
committed players adopting the alternative strategy after T interactions for each value of P. 
 Long term adoption at T=1000 rounds shows a sharp transition when committed groups 
reach approximately 24.2% of the population.  Below this threshold, only a small number of non-
committed agents use strategy B in the N interactions prior to measurement.   Above this threshold, 
the population reaches an absorbing state in which all agents are consistently using strategy B. 

For extremely short term dynamics, committed minorities above the tipping point do not 
always achieve full convergence on the alternative strategy.  For N=1,000, for example, after 20 
rounds (Fig S4, light blue line), full convergence is not reached even with P=50%.  After 45 rounds 
(the average length of experimental trials), most above-threshold groups are successful, while 
committed groups between 25% and 30% are not yet guaranteed to reach convergence.  After 100 
rounds, nearly every above-threshold group has achieved widespread adoption.  
 
Robustness to Population Size 
 The tipping point is robust to variation in population size.  To generate figure 1B inset 
(main text) we run the same analysis shown in Figure S4, but with varying population size.  For 
each population size and each value of C, we measure the percentage of simulations that reach 
complete convergence – i.e., the percentage of outcomes in which 100% of the non-committed 
population has adopted the alternative strategy after 1,000 interactions per person.   

The grey area in Figure 1B inset (main text) shows values of C and N for which the 
committed minority is successful (i.e., they achieve full adoption of the alternative strategy) in 
greater than 1% of simulations, but in fewer than 99% of simulations.  That is, for values of C and 
N that fall below this area, the minority group never succeeds in changing the social convention, 
while for values of C that fall above this area the minority group is successful more than 99% of 
the time.    
 For small population sizes, the tipping point has the appearance of non-monotonicity with 
N due to the fact that not all fractions can be converted into a discrete critical mass size:  for 
example, when N=20, a committed group can comprise either 20% (4/20) or 25% (5/20) of the 
population.  Thus, if the tipping point is between 20% and 25%, then it will take a minimum of 
25% (5/20) committed individuals to overturn an established norm.   For population sizes from 
1000 to 100,000 the tipping point stabilizes at a value of 24.2%. 
 
Effect of Memory Parameter 
 The existence of a tipping point is robust to variation in agent memory length, and a tipping 
point in long term adoption appears for all values of M.  Figure 1B (main text) and Figure S5 show 
the tipping point as a function of M.  To generate these figures, we identify the lowest value for P 
in which at least 99% simulations reach convergence (i.e., achieve full adoption of the alternative 
strategy) after N*1000 interactions.  As shown in Fig S3 a group larger than 10% required even if 
agents choose their strategy only based on the previous 4 interactions.  The tipping point remains 
below 50% even for very large values of M, with a critical mass of only 40% required when 
M=100. 
 
Robustness to Network Density 
 Our experimental platform studies critical mass dynamics in a homogeneously mixing 
(fully connected) network, so that any two agents are equally likely to interact.  Dynamics are 
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qualitatively similar with sparse random networks, as shown in figure S6.  To generate this figure, 
we generated random networks in which each node has an equal number of connections (38).  In 
sparse networks, the model is defined identically, but instead of uniformly selecting two agents for 
interaction, the model randomly selects an edge from the network for interaction.  One node is 
then selected as speaker, and one node is then selected as hearer.   
 Consistent with findings in (14), the tipping point is slightly lower in sparse networks.  To 
generate Figure S6, we run analyses as shown in Figure 4 at varying network densities.  At each 
point, we determine the smallest value for P at which 100% adoption of the alternative strategy is 
achieved in at least 99% of simulated outcomes.  We hold network size constant, and therefore 
network density is determined by average degree (number of network neighbors) for each node.   
 
Robustness to Agent Strategy Preference 

Our experimental design and theoretical model both reflect coordination dynamics in 
which two agents must decide between two possible strategies, both of which are equally preferred 
by every non-committed individual in the population.  To model the possibility that agents may 
prefer one strategy over another strategy, we adopt the standard game theoretic formalization of 
coordination games in which each strategy is assigned a numeric payoff.  In our base model, both 
strategies would be assigned the same payoff since they are equally preferred. 
 To choose a strategy based on numeric payoff, agents select the strategy with the greatest 
“expected payoff,” which is calculated as the probability of success multiplied by the numeric 
payoff of a successful interaction.  In our computational model of coordination, probability of 
success is determined by the percentage of recent interactions (where recent is defined by memory 
length M) in which a particular strategy was observed.  For example, if strategy A provides a 
payoff of 1 and was observed in 60% of the previous M interactions, and strategy B provides a 
payoff of 2 and was observed in 40% of the previous M actions, then the payoff for each strategy 
is calculated as follows: 
 
 payoff of strategy B  = 0.6 x 1 

= 0.6 
 

 payoff of strategy A  = 0.4 x 2  
= 0.8 
 

Thus, strategy A offers a higher expected payoff despite being less frequently observed and 
offering a lower probability of success.   
 We use this model of agent preference to test whether we observe critical mass dynamics 
in situations where agents have a bias towards either the entrenched convention or the alternative 
strategy.  Figure S7 shows the effect of agent preference on adoption dynamics as a function of 
the relative preference for the established convention, which is measured as the ratio between the 
payoff for the established convention and the alternative strategy.  This figure indicates that even 
when agents prefer the established convention twice as much as the alternative strategy (i.e., the 
payoff ratio between the established convention and the alternative strategy equals 2:1) a 
committed minority can still establish critical mass and achieve widespread adoption of the 
alternative strategy.  
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Data Availability 
The complete dataset is publicly available for download from the following URL: 

http://ndg.asc.upenn.edu/experiments/creating-critical-mass/ 
 
This dataset contains a time series for each trial starting at phase 2 as described in Materials and 
Methods.  Each row indicates the percentage of responses which are the established convention, 
the percentage of responses which are the alternative strategy, and the percentage of responses 
which are any other strategy.  

http://ndg.asc.upenn.edu/experiments/creating-critical-mass/
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Figure S1.  Screenshot of the waiting page showing instructions. 
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Figure S2.  Screenshot of game interface.   Note that what is called a “round” in the user interface 
is a single “interaction” as discussed throughout this text. 
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Figure S3.  Estimating Memory Length from Empirical Data.  Each panel shows the fraction 
of interactions successfully predicted in the data from the current experiment.  When memory 
length is greater than 10, our model correctly predicts 80% of the choices by our experimental 
subjects.   
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Figure S4.  Estimating the Tipping Point.  Each line shows the proportion of simulations in 
which every agent adopted the alternative strategy after T interactions per agent for a network of 
N=1,000 agents as a function of P.  When T=1000, there is a sharp threshold between P=0.241 and 
P=0.242 indicating that a small change in the size of a committed minority can generate a dramatic 
shift in the adoption of an alternative convention.  It is worth noting that the threshold is well 
defined only over long time-scales. For shorter time periods, committed minorities that are 
sufficient in long term dynamics may have not yet achieved convergence. 
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Figure S5.  Critical mass dynamics are robust to variation in agent memory length.  Each 
point in this figure shows the tipping point as a function of agent memory length (M).  Even when 
M=100, the tipping point is well below 50%.  Horizontal lines indicate the largest value for P 
which failed in experimental trials (P=21%, dashed line) and the smallest value for P which 
succeeded in experimental trials (P=25%, dotted line) suggesting that M is between 9% and 13%. 
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Figure S6.  The tipping point is robust to changes in network density.  Each point in this figure 
shows the tipping point as a function of network density for simulations with M=12, T=1000*N, 
N=1000.  In very sparse networks where agents only have a few network neighbors, the tipping 
point drops slightly but remains above 20%.  The point furthest to the left shows simulations for 
populations where agents have 10 network neighbors, producing a network density of 1%.   
Network density is defined to be the number of connected edges in a network as a percent of all 
possible edges that could be connected. 
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Figure S7.  Critical mass threshold as a function of relative preference.  This figure shows the 
proportion of simulations in which the alternative norm is adopted, as a function of minority size 
and relative preference for each convention for simulations with M=12, N=1000, T=1000*N.  The 
Y axis of this figure indicates the relative payoff of the established convention as compared with 
the alternative strategy.  When the payoff ratio is equal to 1, both strategies are equally desirable 
(i.e., agents simply adopt the most popularly used strategy) and this model is equivalent to our 
general model of conventions, showing a tipping point of approximately 25%.  When the payoff 
ratio is equal to 2, agents prefer the established convention twice as much as the alternative 
strategy, but a committed minority can nonetheless overturn the established convention.  When the 
payoff ratio is equal to 0.5, agents prefer the established convention half as much as the alternative 
strategy (i.e., they prefer the alternative strategy twice as much as the established convention) and 
the critical mass can be reached with a very small committed minority comprising less than 10% 
of the population. 
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